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I. OVERVIEW

Todays fastest supercomputers already feature more than a million
cores and this number is expected to rise beyond 100 million over
the next decade. Because at the same time frequencies of individual
processors remain constant or even decrease for reasons of efficiency,
developers are increasingly confronted with the fact that accelerating
numerical (but also other) codes necessarily requires to exploit
concurrency. This, in turn, means that concurrency is more and more
becoming a critical property of numerical algorithms. To this effect,
methods for solving initial value problems that provide concurrency
in the temporal direction have been shown to be an effective way to
increase the degree of parallelism in the solution of time-dependent
PDEs. Several such ”time-parallel” methods exist, ranging from the
very early interpolation-based scheme in [1] over the parabolic multi-
grid method [2] to, more recently, the Parareal algorithm [3] and the
”parallel full approximation scheme in space and time” (PFASST) [4].
The talk will focus on both Parareal and PFASST, discuss some
of their critical mathematical properties and present benchmarks of
the performance of these methods for large-scale parallel solutions
of time-dependent PDEs. A very brief summary of the key aspects
including multiple references is given below.

II. PARAREAL

Parareal is at present probably the most popular time-parallel
method, as it allows to use basically arbitrary one-step methods within
the Parareal iteration. Denoting an accurate but computationally
expensive method by F and a coarse but computationally cheap
method by G, Parareal replaces the straightforward serial time-
stepping procedure yn+1 = F(yn), n = 0, . . . N − 1 by an iteration

yk+1
n+1 = G(yk+1

n ) + F(yk
n)− G(yk

n), k = 0, . . . , Nit. (1)

The key here is that once the values yk
n from the previous iteration

are known, the computationally expensive computation of F(yk
n) for

n = 0, . . . , N −1 can be done in parallel on N processors, followed
by a serial but cheap correction in which G(yk+1

n ) is evaluated and
yk+1
n+1 computed. A detailed discussion of the algorithm plus many

additional references can be found e.g. in [5], a detailed mathematical
analysis is conducted in [6]. Its speedup using N processors and
performing Nit iterations can by design not be optimal and is
restricted by two competing bounds
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Nevertheless, Parareal can provide additional speedup for the solution
of time-dependent problems after spatial parallelization is saturated.

III. PFASST

The PFASST method has been introduced in [4]. It is based
on ”spectral deferred correction” (SDC) methods [7], an iterative
approach for computing collocation solutions. PFASST employs a
hierarchy of space-time levels on which iterations of SDC (so-called
”sweeps”) are performed. These levels are coupled, as in nonlinear
multi-grid methods, by an FAS-correction that allows the solution on
the coarser levels to converge up to an accuracy determined by the
discretization on the finest level. PFASST can also be interpreted as
a time-parallel version of a multi-level spectral deferred correction

method (MLSDC) [8]. By not solving the fine-level problem to full
accuracy but only performing SDC sweeps, PFASST has a signifi-
cantly improved speedup bound compared to Parareal. Ideal speedup,
however, is also not obtainable. The capability of PFASST to be used
in parallel simulations on O(100k) cores has been demonstrated for
different scenarios. In [9], it is shown that PFASST can accelerate
a particle-based Navier-Stokes solver beyond the saturation point of
the underlying spatial parallelization of a Barnes-Hut tree-code [10].
Scaling of PFASST combined with a mesh-based discretization and a
parallel multi-grid (PMG) as space-parallel solver for implicit time-
stepping is studied in [11] and the impact of using spatial coarsening
strategies in large-scale parallel simulations is discussed. Finally, the
study is extended in [12], where scaling results of PFASST+PMG on
up to all 448K cores of the IBM Blue Gene/Q JUQUEEN at Jülich
Supercomputing Centre are reported.
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