3-dimensional Eigenmodal Analysis of Electromagnetic Structures

Peter Arbenz, Hua Guo, Yoichi Matsuo Computer Science Department, ETH Zurich, Swietzerland Department of Mathematics, Keio, Japan <u>arbenz@inf.ethz.ch</u> <u>matsuo@math.keio.ac.jp</u>

VS GLADIO

Outline

- Introduction of Femaxx
- Resonant cavities
 - Jacobi-Davidson for linear eigenvalue problems (JDQZ)
- Microwave antennas
 - Jacobi-Davidson for quadratic /nonlinear eigenvalue problems(NLJD)
- Summary

Introduction of Femaxx

- A large scale software project.
- Developed at ETH Zurich and PSI.
- Simulation tool for electromagnetic structures.
- Parallelized for distributed memory computers.
- Solves electric field vector wave equation.
- Finite element method (FEM).
- 3-dimensional, unstructured tetrahedral mesh.
- Model arbitrary geometry or material property.
- Linear, quadratic and nonlinear eigensolvers.
- Open source software,

http://amas.web.psi.ch/docs/femaxx-doc/html/ .

Swiss Federal Institute of Technology (ETH Zurich)

Paul Scherrer Institute (PSI)

Lossless Resonant Cavities

- Time-harmonic electric field *curl-curl* equation $\nabla \times (\mu_r^{-1} \nabla \times \boldsymbol{E}(\boldsymbol{x})) - k_0^2 \varepsilon_r \boldsymbol{E}(\boldsymbol{x}) = \boldsymbol{0}, \quad \boldsymbol{x} \in \Omega.$
- Divergence free condition $\nabla \cdot (\varepsilon_r E(\mathbf{x})) = \mathbf{0}, \quad \mathbf{x} \in \Omega.$
- Perfect electric conductor (PEC) boundary condition $n \times E(x) = 0$, $x \in \Gamma$.

 k_0 : wavenumber in free space μ_r : magnetic relative permeability ε_r : electric relative permittivity Ω : computational domain Γ : boundary conductor wall

Lossless Resonant Cavities

- FEM yields a *real-valued linear* eigenvalue problem $A \mathbf{x} = \lambda M \mathbf{x}, C^T \mathbf{x} = \mathbf{0}, \lambda = k_0^2.$
 - A is positive semi-definite: $a_{ij} = \int_{\Omega} \mu_r^{-1} (\nabla \times N_i) \cdot (\nabla \times N_j) dx$. *M* is positive definite: $m_{ij} = \int_{\Omega} \varepsilon_r N_i \cdot N_j dx$. *C* is a rectangular matrix: $c_{il} = \int_{\Omega} \varepsilon_r N_i \cdot \nabla N_l dx$, C = MY. *N_i* is Nédélec basis function, N_l is Lagrange basis function, *Y* is a rectangular matrix of y_{jl} : $\nabla N_l = \sum_{i=1}^m y_{jl} N_j$.
- JDSYM eigensolver: Jacobi-Davidson method for real-valued symmetric eigenvalue problem.

5-cells Transverse Deflecting Cavity

(a) mesh containing 872'261 elements.

(b) electric field distribution of TM110 mode.

Cyclotron at PSI

Tetrahedral mesh created from original geometry obtained as STEP file from CAD.

(a) dominant mode: 51.48 MHz

(b) 31st mode: 101.04 MHz

(c) 86th mode: 149.58 MHz

(d) 87th mode: 151.51 MHz

Dielectric Lossy Material

- Complex-valued relative permittivity $\varepsilon_r = \operatorname{Re}(\varepsilon_r) - i \operatorname{Im}(\varepsilon_r).$
- Perfect electric conductor boundary condition $n \times E(x) = 0$, $x \in \Gamma$.

 (μ_r, ϵ_r)

- FEM yields constrained eigenvalue problem $A \mathbf{x} = \lambda M \mathbf{x}$, $C^T \mathbf{x} = \mathbf{0}$.
- Entries of M and C depend on ε_r $m_{ij} = \int_{\Omega} \varepsilon_r N_i \cdot N_j dx$, $c_{il} = \int_{\Omega} \varepsilon_r N_i \cdot \nabla N_l dx$.

A is *real* symmetric; M is *complex* symmetric; C is a *complex* rectangular matrix.

Jacobi-Davidson QZ Eigensolver

JDQZ solves generalized *non-Hermitian* eigenvalue problem.

- 1: choose start vector x_0 ; it=0.
- when $it \leq it_{max}$ do 2:
- Solve projected eigenproblem with QZ decomposition. 3:
- 4: Compute an eigenpair closest to target : τ .
- 5: if the associated residual is small enough
 - Accept this eigenpair; deflate search space.
- 7: end if

6:

- 8: Restart if necessary.
- Find an approximate solution t of correction equation. 9:
- Project *t* in null space of C^T . Divergence-free condition 10:
- 11: Orthonormalize t against previous search vectors.
- Expand search space with t. it ++. 12:

13: end

Modified Gram-Schmidt

Krylov solver

Ref: Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst. *Templates for the Solution of Algebraic* 9 Eigenvalue Problems. SIAM, Philadelphia, PA, 2000.

Implementation of Femaxx

- C++ : object-oriented design pattern
- Gmsh : mesh generator
- ParMETIS : mesh partitioner
- Paraview : visualization of electromagnetic field
- Trilinos : parallel objects

Trilinos in Femaxx

- Epetra
 - parallel multivectors
 - parallel sparse matrices
 - distribution map
 - uses MPI functionality
- AztecOO
 - Iterative solvers for correction equation
- Ifpack
 - Block Jacobi preconditioners

lfpack

- Block Jacobi preconditioner
 - Extract diagonal blocks by LU and ILU.

Ifpack doesn't support Complex arithmetic.

Construct double-sized real valued matrix

Ifpack can extract block diagonal elements correctly.
 Reduction of 5% iterations in JDQZ

Ref: David Day, Michael A. Heroux, *Solving Complex-Valued Linear Systems via Equivalent Real Formulations*, SIAM J. Sci. Comput., Vol.23, No.2, pp.480-498.

lfpack

- Construct proconditioners for Krylov solver
 - Block Jacobi AdditiveSchwarz with LU factorization
 - overlap = 0;
 - partitioner : linear;
 - LU solver : Amesos_Klu;
 - Block Jacobi AdditiveSchwarz with ILU factorization
 - overlap = 0;
 - partitioner : linear
 - ILU solver : Ifpack_ILU

Ref: Marzio Sala, Michael Heroux, *Robust Algebraic Preconditioners using IFPACK 3.0*, Sandia Report, SAND2005-0662, 2005.

Example of dielectric lossy material

- **#Tetrahedra** : 141'149
- Processors : 32
- Quadratic element order
- Number of eigenvalues : 6
- Tolerance : 1.0e-6
- Target : [1.0]
- Krylov solvers : Bi-CGStab
- Preconditioners : Diagonal, Block Jacobi-LU/ILU
- Max iteration of correction equation : 50
- Jmin : 5, Jmax : 10

Lossy Dielectric Block

Stored energy: $U = \frac{\varepsilon_0}{2} \int_{\Omega} \operatorname{Re}(\varepsilon_r) |\boldsymbol{E}|^2 d\boldsymbol{x}$. Dissipated energy: $U_d = \frac{\varepsilon_0}{2} \int_{\Omega} \operatorname{Im}(\varepsilon_r) |\boldsymbol{E}|^2 d\boldsymbol{x}$. Resonant frequency: $f = \frac{\omega}{2\pi}$. Quality factor: $Q = \frac{\operatorname{Re}(\lambda)}{2 \times \operatorname{Im}(\lambda)}$.

Table : Numerical results of the lossy dielectrix block cavity

mode	f (GHz)	Q
1	6.171	11.2
2 3	9.095	5.82
4 5	11.41	7.48
6	11.42	5.49

Ref: S.J. Cooke and B. Levush. In 17th Particle Accelerator Conference, pages 2431–2433, May 1997.

Lossy Dielectric Block

Mode 1: electric field

Mode 2: electric field

Mode 1: magnetic field

Mode 2: magnetic field

Ohmically Lossy Material

 Considering conduction current density, then timeharmonic electric field vector wave equation is

$$\nabla \times (\mu^{-1} \nabla \times \boldsymbol{E}(\boldsymbol{x})) + i k_0 \sigma Z_0 \boldsymbol{E} - k_0^2 \boldsymbol{\varepsilon}_r \boldsymbol{E}(\boldsymbol{x}) = \boldsymbol{0}, \quad \boldsymbol{x} \in \Omega.$$

σ is ohmic conductivity. $Z_0 ≈ 377 Ω$ is characteristic impedance in free space.

• FEM yields a constrained *quadratic* eigenproblem $T(\lambda)x := A x + \lambda R x - \lambda^2 M x = 0, \quad C^T x = 0.$ Entry of $R: r_{ii} = i \int_{\Omega} \sigma Z_0 N_i \cdot N_i dx.$

Ohmically Lossy Material

• Linearize the quadratic eigenvalue problem

$$\begin{bmatrix} A & 0 \\ 0 & I \end{bmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \lambda \begin{bmatrix} -R & M \\ I & 0 \end{bmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix},$$
$$\begin{bmatrix} C & 0 \\ 0 & C \end{bmatrix}^T \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} = \mathbf{0}.$$
Identity matrix

Then it is solved by JDQZ eigensolver.

• Dissipated energy now given as: $U_{d} = \frac{\varepsilon_{0}}{2} \int_{\Omega} \operatorname{Im}(\varepsilon_{r}) |\mathbf{E}|^{2} d\mathbf{x} \longrightarrow U_{d} = \frac{1}{2} \int_{\Omega} \sigma |\mathbf{E}|^{2} d\mathbf{x}$

Nonlinear Jacobi Davidson method (NLJD)

- Algorithm :
 - 1: $T(\lambda)\mathbf{x}=0$, choose start vector \mathbf{x}_0 ; it=0.
 - 2: when $it \leq it_{max}$ do
 - 3: Solve projected nonlinear eigenproblem, $V_k^T T(\lambda_k) V_k y = 0$.

Krylov solver

Modified Gram-Schmidt

- 4: Compute a Ritz pair closest to target.
- 5: if the associated residual is small enough
- 6: Return the Ritz pair.
- 7: end if
- 8: Find an approximate solution t of correction equation.
- 9: Project *t* in null space of C^T . Divergence-free condition
- 10: Orthonormalize *t* against previous search vectors.
- 11: Expand search space with t. it ++.

12: end

AztecOO

• Correction equation in NLJD:

$$I - \frac{p_{k} u_{k}^{H}}{u_{k}^{H} p_{k}} \left| T(\lambda_{k}) \right| \left| I - \frac{u_{k} u_{k}^{H}}{u_{k}^{H} u_{k}} \right| t_{k} = -r_{k}, \quad t \perp u_{k},$$

where λ_k : approximation of eigenvalue, u_k : Ritz vector, $p_k = T'(\lambda_k)u_k$

- Solve by AztecOO
 - Epetra_Operator to calculate projection
 - If pack preconditioner: $K \approx T(\tau)$, tau : target

$$\tilde{T} = \left| I - \frac{p_k u_k^H}{u_k^H p_k} \right| T(\tau) \left| I - \frac{u_k u_k^H}{u_k^H u_k} \right|, \quad \tilde{K} = \left| I - \frac{p_k u_k^H}{u_k^H p_k} \right| K \left| I - \frac{u_k u_k^H}{u_k^H u_k} \right|,$$
$$\tilde{K}^{-1} \tilde{T} t_k = -\tilde{K}^{-1} r_k, \quad t \perp u_k,$$

21

Example of half-filled rectangle cavity

- **#Tetrahedra** : 306'001
- Processors : 32
- Number of eigenvalues : 1
- **Tolerance** : 1.0e-6(JDQZ), 1.0e-2(NLJD)
- Target : [100.0]
- Krylov solvers : Bi-CGStab, GMRES(m)
- Preconditioners : Diagonal, Block Jacobi-LU/ILU
- Max iteration of correction equation : 50
- Jmin : 5, Jmax : 10

Half-filled Rectangle Cavity

Table: dominant mode of a rectangle cavity $(22.86 \times 22.86 \times 10.16 \, mm^3)$. Half of the cavity is filled by conductor with $\varepsilon_r = 2.0$ and varying σ . $\tilde{\omega} = \operatorname{Re}(\sqrt{\lambda})c + i\operatorname{Im}(\sqrt{\lambda})c$, c: the speed of light

σ (S/m)	analytical solution for $\tilde{\omega}/(2\pi)$	$\tilde{\omega}/(2\pi)$ computed by Femaxx
0.1	7.379 + j0.354	7.379 + j0.354
0.5	7.236 + j1.819	7.236 + j1.817
1.0	6.579 + j3.864	6.579 + j3.864
1.3	5.711 + j5.197	5.711 + j5.198

electric field

magnetic field

Half-filled Rectangle Cavity

- Linear element order
 - JDQZ eigensolver with linearization (dof:664'130)

precondit	outer	inner	average	overall	build time	solver	"speed-
ioner	iteration	iteration		time		time	up"
diag	46	667	14.5	67.51	0.01	49.18	
blkj-ilu	34	348	10.24	64.88	1.17	35.9	1.04
blkj-lu	37	276	7.46	141.39	40.19	85.56	0.48

NLJD eigensolver, Bi-CGStab (dof:332'065)

preconditi	outer	inner	average	overall	build time	solver	"speed-
oner	iteration	iteration		time		time	up"
diag	18	597	35.12	39.91	0.01	20.92	
blkj-ilu	17	366	22.88	34.72	1.27	16.18	1.15
blkj-lu	30	69	2.46	81.57	40.64	29.92	0.49

Half-filled Rectangle Cavity

- Quadratic element order (dof:1'852'810)
 - NLJD, Bi-CGStab, 2-level hierarchical basis prec

preconditi	outer	inner	average	overall	build time	solver	"speed-
oner	iteration	iteration		time		time	up"
diag	53	1306	24.64	579.78	6.07	496.7	
blkj-ilu	29	366	12.62	261.00	7.3	177.74	2.22
blkj-lu	23	160	6.96	307.44	46.58	183.83	1.89

NLJD, GMRES(30), 2-level hierarchical basis prec

preconditi	outer	inner	average	overall	build time	solver	"speed-
oner	iteration	iteration		time		time	up"
diag	44	852	21.85	384.91	0.05	259.91	
blkj-ilu	26	448	19.48	323.64	7.30	233.31	1.19
blkj-lu	19	202	11.88	360.77	46.30	232.04	1.07

Microwave Antenna

• Bounded computational domain $\Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3$.

- Ω_1 : antenna device
- Ω_2 : substrate
- Ω_3 : environment
- Γ : absorbing boundary
- Ω : arbitrary shape, usually sphere
- 1st order absorbing boundary condition (ABC): $\mathbf{n} \times \nabla \times \mathbf{E}(\mathbf{x}) = -i k_0 \sqrt{\mu_r \varepsilon_r} \mathbf{n} \times (\mathbf{n} \times \mathbf{E}(\mathbf{x})), \quad \mathbf{x} \in \Gamma, k_0 = \sqrt{\lambda}.$

Microwave Antenna

• FEM yields a constrained *quadratic* eigenproblem $A \mathbf{x} + \lambda R \mathbf{x} - \lambda^2 M \mathbf{x} = \mathbf{0}, \quad C^T \mathbf{x} = \mathbf{0}.$

$$a_{ij} = \int_{\Omega} \mu_r^{-1} (\nabla \times N_i) \cdot (\nabla \times N_j)$$

$$r_{ij} = i \int_{\Gamma} \sqrt{\varepsilon_r / \mu_r} (n \times N_i) \cdot (n \times N_j)$$

$$m_{ij} = \int_{\Omega} \varepsilon_r N_i \cdot N_j$$

$$c_{il} = \int_{\Omega} \varepsilon_r N_i \cdot \nabla N_l$$

integral on boundary

$$\Omega_3$$
 Γ
 Ω_1
 Ω_2

Example of microwave antenna

- **#Tetrahedra** : 645'868
- Processors : 32
- Number of eigenvalues : 1
- **Tolerance** : 1.0e-3(JDQZ), 1.0e-3(NLJD)
- Target : [0.1]
- Krylov solvers: Bi-CGStab, GMRES(m)
- Preconditioners : Diagonal, Block Jacobi-LU/ILU
- Max iteration of correction equation : 50
- Jmin : 5, Jmax : 10

Dielectric Resonant Antenna (DRA)

Table: Dominant mode of several DRA.

ε_r	a	b	d	f	$f_{\rm MI}$	Diff.	Q_1
	(mm)	(mm)	(mm)	(GHz)	(GHz)	(%)	
79.46	7.45	7.45	2.98	4.644	4.346	6.9	176.8
37.84	8.60	8.60	2.58	6.221	5.934	4.8	31.1
37.84	7.45	7.45	3.51	5.614	5.337	5.2	50.8
20.0	10	10	4	6.545	6.409	2.1	13.3

 f, Q_1 and Q_2 are numerical results by using 1st order ABC; f_{MI}, Q_{MI} are theoretically determined results by using perfect magnetic conductor (PMC) boundary conditions.

Remark:Electric fieldplotted over y-axis: $E_y \approx 0$, $E_x \approx A k_y \sin(k_y y)$.

Ref:

1, R. K. Mongia and A. Ittipiboon. IEEE Trans. Antennas Propag., 45(9):1348-1356 (1997).

2, H. Guo, B. Oswald, and P. Arbenz, Opt. Express 20, 5481-5500 (2012).

Microwave Antenna

- Linear element order
 - JDQZ solver with linearization (dof:162'976)

preconditi	outer	inner	average	overall	build time	solver	"speed-
oner	iteration	illeration		ume		ume	up
diag	20	988	49.78	31.87	0	21.55	
blkj-ilu	18	881	48.94	19.03	0.43	8.93	1.67
blkj-lu	18	259	14.39	22.75	0.3	14.48	1.40

NLJD solver ,Bi-CGStab(dof:81'488)

pr	econditi	outer	inner	average	overall	build time	solver	"speed-
or	ner	iteration	iteration		time		time	up"
di	ag	19	559	29.42	14.44	0	5.35	
bl	kj-ilu	19	587	30.89	14.60	0.4	5.99	0.99
bl	kj-lu	20	311	15.55	14.53	0.42	7.01	0.99

Microwave Antenna

- Quadratic element order(dof:439'188)
 - NLJD solver, Bi-CGStab, 2-level hierarchical basis prec

preconditi	outer	inner	average	overall	build time	solver	"speed-
oner	iteration	iteration		time		time	up"
diag	29	745	25.69	47.27	0.04	32.77	
blkj-ilu	17	325	19.12	31.11	0.62	14.31	1.52
blkj-lu	17	223	13.12	36.39	0.81	20.89	1.30

NLJD, GMRES(30), 2-level hierarchical basis prec

preconditi	outer	inner	average	overall	build time	solver	"speed-
oner	iteration	iteration		time		time	up"
diag	35	952	30.71	77.46	0.02	48.78	
blkj-ilu	20	559	31.06	63.90	1.42	37.30	1.76
blkj-lu	33	1035	35.69	149.32	2.96	117.72	0.67

Summary

- Femaxx: a parallel 3D finite element eigensolver package.
- Simulation tool for advanced electromagnetic structures.

eigensolver	problem type	applications
JDSYM	Generalized real symmetric eigenvalue problem	lossless resonant cavities
JDQZ	Generalized non-Hermitian eigenvalue problem; Quadratic eigenvalue problem	dielectric lossy material; ohmically lossy material; plasmonic nanostructures
NLJD	Nonlinear eigenvalue problem	ohmically lossy material; plasmonic nanostructures