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Steady flow problems: One system

Figure: Pershing-II, US Army, PD (left), A320 wing, Kudak, CC-by-SA 3.0 (right)
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Unsteady flow problems: Sequence of Systems

Figure: Hurricane Katrina, NASA, PD; Lillgrund Offshore windfarm, Mariusz
Padziora, CC-by-sa 3.0 via Wikimedia Commons; Gas Quenching, Steinhoff
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Example I: Navier-Stokes solver

Consider unsteady 3D compressible viscous flow problems

Important: Turbulence, Boundary Layer, Mach number

Discretization in space via FV or DG

Leads to initial value problem in time

→ huge number of unknowns, problem is typically stiff.

→ implicit time integration necessary.

Goal: Thus sequence of nonlinear systems!

Overview: B., Numerical methods for the unsteady compressible Navier-Stokes

equations, Habilitation Thesis, 2012, University of Kassel
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Example II: Nonlinear Optimization

Consider the problem
min
Rm

f(x)

with f(x) nonlinear.

Local minima are characterized by

∇f(x) = 0

Again a nonlinear system!

Let’s solve them!
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What kind of methods do we need?

Solver needs to respect hardware trend

High degree of parallelism

Low storage per process

Software needs to be used

Modularity and Flexibility

Ease of implementation

And: Superfast!
Figure: Cray Hermit in
Stuttgart; Bild: ThE cRaCkEr,
CC-by-sa 3.0, via Wikimedia
Commons
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Implicit time integration

Discretized PDEs lead to stiff problems, thus a large stability region is
required: A-stable methods!

Unsteady problem: Higher order and time adaptivity.

BDF often used, but does not fit the profile.

Bijl et al (01,02): ESDIRK methods competitive!

One explicit and subsequent backward Euler steps.

ESDIRK: Specific diagonally implicit Runge-Kutta methods

Time adaptivity via embedded method

Software TEMPO (Time adaptivE iMPlicit cOnservation law solver)
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ESDIRK schemes

See Kennedy, Carpenter ’01

ESDIRK 3: 4 stages, order 3, embedding order 2

ESDIRK 4: 6 stages, order 4, embedding order 3

All A-stable, L-stable, stiffly stable

First stage is equal to last stage from previous time step, thus comes
for free

k1 = f(un)

ki = f(un + ∆t
i∑

j=1

aijkj), i = 2, ..., s

un+1 = un + ∆t
s∑

i=1

asiki .
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Rosenbrock-Wanner (ROW) schemes

Linearize DIRK scheme, use fixed W ≈ ∂f(un)
∂u

Impose additional order conditions

ROS34PW2: 4 stages, order 3, embedding order 2

RODASP: 6 stages, order 4, embedding order 3

A-stability, L-stability possible

(I− γ∆tW)ki = f(si ) + ∆tW
i−1∑
j=1

γijkj , i = 1, ..., s

si = un + ∆t
i−1∑
j=1

aijkj , i = 1, ..., s

un+1 = un + ∆t
s∑

i=1

biki .
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The specific system

Form of equation is independent of precise time integration scheme

u = α∆tf(u) + ψ.

Rosenbrock case:
(I− γ∆tW)ki = ψ

This type of linear system also appears when applying Newton to the
nonlinear equation!

Thus same type of schemes relevant for that class as well
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Basic Flow chart for DIRK scheme

Given error tolerance TOL, initial time t0 and time step size ∆t0

For i = 1, ..., s

For k = 0, 1, ... until termination criterion with tolerance TOL/5 is
satisfied or MAX SOLVER ITER has been reached

If MAX SOLVER ITER has been reached, but the tolerance test has
not been passed, repeat time step with ∆tn = ∆tn/4

Estimate local error and compute new time step size ∆tn+1

tn+1 = tn + ∆tn

Note: Puts additional bound on time step via nonlinear solver
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How to solve nonlinear systems

Except for very special problems no direct solvers or formulas
available. Example: Quadratic Equations

Thus iterative schemes needed

Large number of algorithms for scalar problems

Less so for systems

Fixed Point methods
Multigrid methods
Newton-Raphson method
Homotopy methods

Need to be able to compare different schemes!
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Speed of convergence

A method with iterates x (k), k ∈ N, which converges to x∗ is called

linearly convergent to x∗, if ‖x (n+1) − x∗‖ ≤ C‖x (k) − x∗‖,
0 < C < 1,

superlinearly convergent of order p to x∗, if
‖x (n+1) − x∗‖ ≤ C‖x (k) − x∗‖p with p > 1, C > 0,

superlinearly convergent to x∗, if limn→∞
‖x(k+1)−x∗‖
‖x(k)−x∗‖ = 0,

quadratically convergent to x∗, if ‖x (n+1)− x∗‖ ≤ C‖x (k)− x∗‖2 with
C > 0.
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Termination criteria

Want to solve equation such that error in approximate solution is
smaller than tolerance τ

Problem: Don’t know the error

Solution: Use Residual as indicator of error

Works if we are reasonably close to solution

Relative criterion
‖r(xk)‖ ≤ τr‖r(x0)‖

Absolute criterion
‖r(xk)‖ ≤ τa‖

Mixed
‖r(xk)‖ ≤ τr‖r(x0)‖+ τa
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Fixed point methods

Fixed point equation
g(x) = x

Fixed point iteration
xk+1 = g(xk)

Converges linearly provided that g is selfmap on compact domain and
Lipschitz continuous with Lipschitz constant L < 1

Easy to implement, parallelizes, etc.

Not suitable for stiff problems, because L < 1 only if time step is
small enough

Therefore not fast!
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Multigrid methods

Represent discrete solution as sum of eigenvectors.

These are discrete versions of the eigenfunctions of the differential
operators.

These are periodic functions like sin jπΘ, cos jπΘ, e ijΘ

Idea: Decompose representation in low and high frequency parts.

Reduce high frequency error components significantly using cheap
iteration (smoother)

Approximate low frequency errors on coarse grid → Reduction of
problem size

Recursive application → Multigrid method!
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Multigrid: Linear variant

Given hierarchy of grids and discretization Al of problem on all levels.

Function MG(xl ,bl , l)

if (l = 0), xl = A−1
l bl (Exact solve on coarse grid)

else

xl = Sν1

l (xl ,bl) (Presmoothing)
rl−1 = Rl−1,l(bl − Alxl) (Restriction)
vl−1 = 0
For (j = 0; j < γ; j + +) MG (vl−1, rl−1, l − 1) (Computation of coarse
grid correction)
xl = xl + Pl,l−1vl−1 (Correction via prolongation)
xl = Sν2

l (xl ,bl) (Postsmoothing)

end if
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Multigrid: Nonlinear variant

Given hierarchy of grids and discretization of problem on all levels.

Function FAS-MG(ũl ,ul , sl , l)

ul = Sν1
l (ũl , sl) (Presmoothing)

if (l > 0)

rl = sl − Fl(ul)
ũl−1 = Rl−1,lul (Restriction of solution)
sl−1 = Fl−1(ũl−1) + Rl−1,l rl (Restriction of residual)
For (j = 0; j < γ; j + +) FAS-MG(ũl−1,ul−1, sl−1, l − 1)
(Computation of the coarse grid correction)
ul = ul + Pl,l−1(ul−1 − ũl−1) (Correction via Prolongation)
ul = Sν2

l (ul , sl) (Postsmoothing)

end if
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Possible smoothers

Smoothers are problem dependent!

Need to be designed specifically for your PDE

Laplace: Jacobi, Gauß-Seidel, ILU

Navier-Stokes: SGS, Runge-Kutta methods

All important problems like parallel scaling, memory requirements,
speed hinge on smoother

With superb smoother, multigrid will converge linearly in 3-5 steps
(textbook multigrid scheme)

Finding good smoothers open problem for important PDEs

Can later be used inside a Newton scheme
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Multigrid convergence: UFLO103 on structured grid

Figure: UFLO103 convergence, first 100 steps using the steady state solver, then
50 iteration of dual time stepping per time step (Jameson ’91, Caughey &
Jameson ’01)
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Multigrid convergence: DLR TAU

Figure: DLR TAU dual time stepping for two different systems.
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Illustration of Newton’s method

Figure: Illustration of Newton’s method in one dimension (left); convergence
curve (right)
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Newton’s method

∂F

∂x

∣∣∣∣
x(k)

∆x = −F(x(k)),

x(k+1) = x(k) + ∆x.

Use first order approximation of function

Local quadratic convergence

Outside no statement possible

Nonlinear system transformed into sequence of linear systems
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Flow-Chart for DIRK scheme with Newton

Given error tolerance TOL, initial time t0 and time step size ∆t0

For i = 1, ..., s
For k = 0, 1, ... until termination criterion with tolerance TOL/5 is
satisfied or MAX NEWTON ITER has been reached

Solve linear system up to certain tolerance

If MAX NEWTON ITER has been reached, but the tolerance test has
not been passed, repeat time step with ∆tn = ∆tn/4

Estimate local error and compute new time step size ∆tn+1

tn+1 = tn + ∆tn

Note: Puts additional bound on time step via nonlinear solver
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Summary

Nonlinear systems arise particularly in the solution of nonlinear PDEs
and nonlinear optimization

They have to be solved iteratively

Want schemes that scale in parallel and use little storage

Fixed Point not suitable for stiff problems

Multigrid needs to be adjusted to specific problem

Newton local quadratic convergence
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