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Motivation

Figure: Hurricane Catrina, NASA, PD (left), Lillgrund Offshore windfarm,
Mariusz Padziora, CC-by-sa 3.0 (right); Gas Quenching, Steinhoff
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Compressible Navier Stokes equations

Second order system of conservation laws (mass, momentum, energy)
modeling viscous compressible flow:

∂tρ+∇ ·m = 0,

∂tmi +
3∑

j=1

∂xj (mivj + pδij) =
1

Re

3∑
j=1

∂xj Sij , i = 1, 2, 3

∂t(ρE ) +∇ · (Hm) =
1

Re

3∑
j=1

∂xj

(
3∑

i=1

Sijvi −
1

Pr
Wj

)
,

Equation of state: p = (γ − 1)ρe.

ut +∇ · f (u,∇u) = 0.
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Navier-Stokes-Solvers

Consider unsteady 3D compressible viscous flow problems

Important: Turbulence, Boundary Layer, Mach number

Discretization in space via FV or DG

Leads to initial value problem in time

→ huge number of unknowns, problem is typically stiff.

→ implicit time integration necessary.

Goal: Fast implicit 3D solver in the context of DG!

Overview: B., Numerical methods for the unsteady compressible Navier-Stokes

equations, Habilitation Thesis, 2012, University of Kassel

Birken, Philipp (University of Kassel) Preconditioning for 3D-NS Lyon 2013 6 / 37



Parallel Solvers

Form of equation is independent of precise
time integration scheme

u = α∆tf(u) + ψ.

→ Need for fast low storage parallel scaling
solvers Candidates:

Preconditioned inexact Jacobian-Free
Newton-Krylov (JFNK)

FAS (multigrid) with appropriate
smoothers

Figure: Cray Hermit in
Stuttgart; Bild: ThE cRaCkEr,
CC-by-sa 3.0, via Wikimedia
Commons
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Why high order methods?

Standard for Finite Elements, Finite Volume is 2. order

Higher order for FV methods in 3D problematic, since a lot of
neighboring cells necessary (ENO/WENO)

Popular approach is DG: Localize high order in cell, but use
discontinuous ansatz functions for stability for convection

Alternative: Use FE with high order and stabilization

For many turbulent flows necessary to resolve eddies

Direct numerical simulation (DNS): O(Re3) unknowns

Large Eddy Simulation (LES): O(Re2.5) unknowns

Efficient LES only imaginable using high order methods

Goal: Efficient DG method for LES
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Finite Volume schemes (FVM)

Standard schemes in computational fluid dynamics.

Developed in last 50 years.

In most simple form first order.

Higher order in space via linear reconstruction and limiter.

More than second order not practical.

For explicit Euler scheme stable for CFL < 1.

Implicit methods necessary for large number of problems and part of
3D production solvers.

Implicit methods magnitudes faster than explicit ones.
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Fast implicit Discontinuous Galerkin solvers?

For first order identical to FVM.

Much higher orders p possible using piecewise polynomials.

Huge number of different approaches.

For explicit scheme stable for CFL = O( 1
2p−1 ).

Implicit methods thus even more necessary.

In 2D no fast implicit method available.

In 3D additional difficulties from memory requirements.

Is it possible to get a fast implicit DG scheme in 3D?

Determines applicability of DG in industry!

How do different time integration schemes compare for DG?
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The story so far

In the implicit context...

...quite a number of papers on steady Euler and NS

Less so for the unsteady case:

Klaij, van der Vegt, van der Wen 06, 2D-NS

Wang, Mavriplis 07, 2D-Euler

Kanevsky, Carpenter, Gottlieb, Hesthaven 07, 2D-NS

Persson, Peraire 08, 2D-NS

St.-Cyr, Neckels 09, 2D-Euler

Dolejsi, Holik, Hozman 11, 2D-NS

Uranga, Persson, Drega, Peraire 11, 3D-NS

Birken, Gassner, Haas, Munz 13, 3D-NS

Implicit methods for unsteady 3D NS still need some work!
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Comparing time integration schemes

In this talk, I’ll focus on comparing time integration schemes.

Need to fix

Specific DG scheme

Specific solver for systems in implicit time integration

Find a fair way of comparing schemes
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Eigenvalues

Figure: Re=100, 4th degree polynomial
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Implicit time integration

Large stability region required: A-stable methods!

Unsteady problem: Higher order and time adaptivity.

BDF often used, but does not fit the profile.

Bijl et al (01,02): ESDIRK methods competitive!

One explicit and subsequent backward Euler steps.

Time adaptivity easy.
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Time integration schemes used

Explicit schemes

LSERK4: 5-stage explicit RK, 4th order, large stability region
(Carpenter, Kenndy)

RKCK: local time stepping scheme using CERK methods to predict
solution locally in each cell, then correct according to a higher order
Space-time expansion via the Cauchy-Kovalevskaya procedure
(Gassner, Dumbser, Hindenlang, Munz 11).

Implicit schemes

ESDIRK4, ESDIRK3, SDIRK3

ROS34PW2, Rosenbrock method, linearized SDIRK3 (Rang,
Angermann 05).
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Tolerance scaling and time adaptivity

Given TOL, determine new time step based on

di = TOL|un
i |+ TOL

∆tnew = ∆tn · ‖̂l./d‖−1/(p̂+1).

We can prove that ‖e‖ → 0 for TOL→ 0.

For TOL towards zero, we observe

‖e‖ = τ · TOLα

with α < 1 method dependent.

Tolerance scaling (Söderlind, Wang ’06): Rescaling via

TOL′ = TOL
(α−1/α)
0 TOL1/α

such that for one value TOL0 = TOL′ = TOL.

DIRK schemes: α = 0.9, ROS34PW2: α = 0.8.
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DG method: Weak form

Chose grid and element types (teds, quadrilaterals, prisms,...)

Start with:
ũt +∇ · f̃ (ũ,∇ũ) = 0.

Determine solution using Galerkin condition

(ũt , φ) + (∇ · f̃ , φ) = 0

Integration by parts:

(ũt , φ) +

∫
∂Ω

f̃ · ndS − (f̃ ,∇φ) = 0

Transform every cell to unit cell E :

(ut , φ) +

∫
∂E

f · ndS − (f ,∇φ) = 0
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DG: Polynomial Ansatz

Use polynomials of degree p − 1 for trial and solution space:

uP(x , t) =
∑
j

uj(t)φj(x).

Two types of basis for polynomial space possible
1 Lagrange-type, thus based on nodes (nodal)
2 Monomial-type, thus based on monomials (modal)

Solution at cell boundary discontinuous by construction.

Approximate boundary integrals using numerical fluxes

Takes ideas from FE and FV world
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Computation of the fluxes

Convective terms using HLLC.

Diffusive terms more difficult.

Standard averaging procedure from FVM unstable for DG.
Use dGRP (Gassner, Lörcher, Munz 06).

Use Gaussian quadrature for scalar products, obtain

Mu′ +
nFaces∑
i=1

MS
i gi −

d∑
k=1

Sk fk = 0.

Matrices and vectors depend on basis, quadrature rule, grid and fluxes
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Polymorphic Modal-Nodal method

Here: Polymorphic modal method with nodal integration (Gassner,
Lörcher, Munz, Hesthaven 09)

Unstructured cells with curved boundaries (Tets, Quads,...).

Hierarchical orthonormalized monomial basis on reference cells

x0
1 x0

2 x0
3 , x1

1 x0
2 x0

3 , x0
1 x1

2 x0
3 , x0

1 x0
2 x1

3 , ...

Use different (nodal) basis for integration for fast scheme!

Convective terms using HLLC.

Diffusive terms with dGRP (Gassner, Lörcher, Munz 06) (small
stencil).
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Newton and Multigrid

Steady States

Multigrid fast

Newton slow

Unsteady problems

Here we expect significantly faster convergence

Multigrid marginally, if at all, faster, not fast on unstructured grids

Newton significantly faster than for steady state

Still: Existing solvers for unsteady problems not fast!
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Improving the existing solvers

Multigrid

Dual time stepping typically implies reusing the steady state algorithm
without changes

Thus less than optimal multigrid convergence

Redesign multigrid (see B., Optimizing Runge-Kutta smoothers for
unsteady flow problems, ETNA, 2012)

Newton

Very good scheme: Jacobian-Free Newton-GMRES with good parallel
preconditioner

Multigrid candidate for preconditioner (see above)

Compare Solving nonlinear systems inside implicit time integration schemes for

unsteady viscous flows, P. Birken, pp. 57-71 in R. Ansorge, H. Bijl, A. Meister, T.

Sonar (editors), Numerics of Nonlinear Hyperbolic Conservation Laws, Notes on

Numerical Fluid Mechanics, Springer
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Inexact Jacobian-free Newton-Krylov method

Solve nonlinear systems using Newton’s method.

Iterate until relative TOL/5 satisfied.

Linear equation systems solved using GMRES.

Tolerances in GMRES by forcing terms of Eisenstat/Walker.

GMRES does not need Jacobian, only matrix vector products.

Approximate ∂F
∂uq in GMRES by finite differences:

Aq =
∂F(u(k))

∂u
q ≈ F(u(k) + εq)− F(u(k))

ε
.

Immense flexibility

Method is quadratically convergent in large radius!
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Feedback-Loops for DIRK scheme

Given error tolerances τ , initial time t0 and time step size ∆t0

For i = 1, ..., s
For k = 0, 1, ... until termination criterion with tolerance τ/5 is
satisfied or MAX NEWTON ITER has been reached

Determine Eisenstat-Walker relative tolerance
Solve linear system using preconditioned GMRES

If MAX NEWTON ITER has been reached, but the tolerance test has
not been passed, repeat time step with ∆tn = ∆tn/4

Estimate local error and compute new time step size ∆tn+1

tn+1 = tn + ∆tn

Note: Puts additional bound on time step via nonlinear solver
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The linear system: 2D is not 3D, FV is not DG!

System matrix: A =
[

I
∆t −

∂ f̂(u)
∂u

]
|u(k) .

Sparse, nonnormal, not diagonally dominant and ill conditioned for
reasonable ∆t.

Generally unstructured, but symmetric block-sparsity pattern.

In FVM context: block sizes of 5× 5 in 3D.

Here: Block sizes depend on degree N and dimension:

(d + 2) · (N + d)!/(N!d!)

This makes the design of efficient implicit DG schemes in 3D so
difficult, since blocks are huge! Degree 5: 280× 280!

Worse for DG-SEM case ((d + 2) · (N + 1)d , degree 5: 1080× 1080)
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Preconditioning

Use right preconditioning, since residual is unchanged (inexact JFNK)

APy = b, y = P−1∆u

In a JFNK scheme, we do not compute the matrix a priori.

Need to compute all parts of matrix needed for preconditioner.

Interesting: Two-level ILU from Persson, Peraire 08. Uses a coarse
scale correction via Jacobi (ILU-CSC)

Jacobi:
P = D−1

Parallel, low storage, not very accurate

Gauß-Seidel:
P = (D + L)D−1(D + U)

Sequential, stores full matrix, accurate
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Alternative: ROBO-SGS!

Common in FV: Compute first order matrix only

Here: Make use of hierarchical basis

Compute offdiagonal blocks of lower order only in SGS!

Reduced Off-diagonal-Block-Order-SGS

Saves setup time and application cost!

In parallel, no communication between blocks for preconditioner.

Birken, Gassner, Haas, Munz, JCP 2013

Note: Idea works for any high order method employing a hierarchical
basis
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ROBO-SGS: Off-Block-Sparsity patterns

(a) p = 0 variant (b) p = 1 variant

Figure: Reduced versions of the off-block Jacobians, p = 0 and p = 1 variants
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Flow around a cylinder, Ma=0.3, Re=1000

Figure: Initial (top) and final (bottom) velocity magnitude for cylinder problem.
10, 400 hexahedral cells, order 6, 2, 912, 000 unknowns.
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Comparison of preconditioners

Preconditioner Iter. CPU [s] Comparison to Jacobi [%]

No preconditioner 8,797 2,194 36.0
Jacobi 3,712 1,613 0.0

ROBO-SGS-0 3,338 1,538 -4.6
ROBO-SGS-1 2,824 1,429 -11.4
ROBO-SGS-2 2,656 1,485 -7.9
ROBO-SGS-3 2,641 1,679 4.1
ROBO-SGS-4 2,645 1,989 23.3
ROBO-SGS-5 2,640 2,427 50.5

ILU(0) 2,641 2,467 52.9
ILU(0)-CSC 2,640 2,994 85.6

Table: Computations on 64 cores of the CRAY XE6 cluster Hermit.
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Parallel scaling

ROBO-SGS-1 Jacobi

Cores Unkn./core Iter. Time Scaling Iter. Time Scaling

64 45,500 2,824 1,429 - 3,712 1,613 -
128 22,750 2,926 750 95% 3,712 833 97%
256 11,375 3,031 395 90% 3,712 432 93%
512 5,688 3,479 230 78% 3,712 231 87%

ILU ILU-CSC

Cores Unkn./core Iter. Time Scaling Iter. Time Scaling

64 45,500 2,641 2,467 - 2,640 2,994 -
128 22,750 2,641 1,196 103% 2,640 1,477 101%
256 11,375 2,647 576 107% 2,640 728 103%
512 5,688 2,713 287 107% 2,679 383 98%

Table: Parallel scaling for cylinder test case on Cray Hermit.

Scaling very good even for very small number of unknowns per core

Iteration number almost constant
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Flow around sphere, Re=1000, Ma=0.3

Figure: Isosurfaces of lambda-2=−10−4 for t = 30s. grid has 21.128 elements,
739,480 unknowns, TOL = 10e−3
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Comparison of time integration schemes

Scheme Iter. CPU in s

LSERK4 - 346,745
RKCK - 80,889

SDIRK3 22,223 110,844
ESDIRK3 14,724 73,798
ESDIRK4 14,639 66,051

ROS34PW2 60,449 239,869

Table: Efficiency for flow around sphere, ROBO-SGS-1.
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Summary and Conclusions

Implicit modal DG scheme for unsteady 3D viscous flows.

FV is not DG! 2D is not 3D!

Solver: JFNK with ROBO-SGS preconditioner.

ROBO-SGS interesting alternative to Jacobi for moderate degree of
parallelism

Use tolerance scaling to make time integration schemes comparable

LSERK4 and ROS34PW2 not competitive

RKCK and ESDIRK schemes winners

This test case: ESDIRK4 fastest.
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