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Flow-Chart for DIRK scheme with Newtonx

Given error tolerance TOL, initial time t0 and time step size ∆t0

For i = 1, ..., s
For k = 0, 1, ... until termination criterion with tolerance TOL/5 is
satisfied or MAX NEWTON ITER has been reached

Solve linear system up to certain tolerance

If MAX NEWTON ITER has been reached, but the tolerance test has
not been passed, repeat time step with ∆tn = ∆tn/4

Estimate local error and compute new time step size ∆tn+1

tn+1 = tn + ∆tn

Birken, Philipp (University of Kassel) Newton’s method JFNK Tutorial 4 / 32



Outline

1 Introduction

2 Newton’s method

3 JFNK

4 Newton and Multigrid

5 The fine print

Birken, Philipp (University of Kassel) Newton’s method JFNK Tutorial 5 / 32



Illustration of Newton’s method

Figure: Illustration of Newton’s method in one dimension (left); convergence
curve (right)
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Newton’s method

Assume we solve F(x) = 0. Given starting value x0, Newton’s method is
given by:

∂F

∂x

∣∣∣∣
x(k)

∆x = −F(x(k)),

x(k+1) = x(k) + ∆x, k = 0, ....

Uses first order approximation of function

Local quadratic convergence

Outside of local ball of convergence no statement possiblex

Nonlinear system transformed into sequence of linear systems
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Standard Assumptions

Always need Differentiability (at least piecewise)

For easy convergence theory

i) F(x) = 0 has a solution x∗.
ii) F′ : Ω→ Rm×m is Lipschitz continuous with Lipschitz constant L′.
iii) F′(x∗) is nonsingular.

Lower requirements technically possible
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The linear system

System matrix: A =
[

I
∆t −

∂f(x)
∂x

]
|x(k) .

This matrix is sparse, nonnormal, not diagonally dominant and ill
conditioned for reasonable ∆t.

Generally unstructured, but symmetric block-sparsity pattern.

In FVM/low order FEM context: block sizes small even in 3D.

For DG/high order FEM: Block sizes depend on degree N and
dimension d :

(d + 2) · (N + d)!/(N!d!)

This makes the design of efficient implicit DG schemes in 3D so
difficult, since blocks have couple hundred unknowns
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Problems of exact Newton method

Problem 1: The linear systems are solved exactly

This implies either a direct solver or an iterative one with extremely
small tolerance

But we want to solve nonlinear systems only approximately

This is way too costly

But what happens when we do not solve exactly?

Problem 2: The Jacobian has to be assembled

Typically very costly to do

Huge amount of storage for 3D problems

Need way around this
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Inexact Newton methods

Let’s solve problem 1!∥∥∥∥∂F(x)

∂x
|x(k)d + F(x(k))

∥∥∥∥ ≤ ηk‖F(xk)‖ (1)

x(k+1) = x(k) + d, k = 0, 1, ....

Theorem

Let the standard assumptions hold. Then there is δ such that if x(0) is in a
δ-neighborhood of x∗, {ηk} ⊂ [0, η] with η < η̄ < 1, then the inexact
Newton iteration (1) converges linearly. Moreover,

if ηk → 0, the convergence is superlinear and

if ηk ≤ Kη‖F(x(k))‖p for some Kη > 0 and p ∈ [0, 1], the convergence
is superlinear with order 1 + p.
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Eisenstat-Walker ’96

ηAk = γ
‖F(x(k))‖2

‖F(x(k−1))‖2
, γ ∈ (0, 1]

To obtain quadratic convergence, bound sequence away from zero:

ηBk = min(ηmax , η
A
k )

Definition of ηk is refined to

ηCk =


ηmax , n = 0,
min(ηmax , η

A
k ), n > 0, γη2

k−1 ≤ 0.1
min(ηmax ,max(ηAk , γη

2
k−1)) n > 0, γη2

k−1 > 0.1

to avoid volatile decreases in ηk . To avoid oversolving

ηk = min(ηmax ,max(ηCk , 0.5τ/‖F(x(k))‖)). (2)
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Methods of Newton type

Now, let’s solve problem 2!

Freeze the Jacobian and periodically recompute periodically

Thus we use approximation

x(k+1) = x(k) − A(x(k))−1F(x(k))

Meaning we solve a different linear equation system

Only linear convergence, provided that ρ(I− A(x)−1 ∂F
∂x ) is small

enough

This is not a good solution for problem 2!
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Jacobian-free Newton-Krylov method

Let’s give problem 2 another try!

Solve iterative systems using Krylov subspace method (e.g. GMRES)

These do not need Jacobian, only matrix vector products.

Approximate ∂F
∂xq by finite differences:

Aq =
∂F(x(k))

∂x
q ≈ F(x(k) + εq)− F(x(k))

ε
.

More expensive than sparse matrix vector products.

Immense flexibility

Since we solve the correct linear equation system, quadratic
convergence is retained, thus fast method!
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Convergence of JFNK

Theorem

Let the standard assumptions hold. Then there are δ, σ̄, CG such that if
x0 is in a δ-neighborhood of ~x∗ and the sequences {ηk} and {εk} satisfy

σn = ηn + CG εn ≤ σ̄,

then the Jacobian free Newton-GMRES iteration converges linearly.
Moreover,

if σk → 0, the convergence is superlinear and

if σk ≤ Kη‖F(xk)‖p for some Kη > 0 and p ∈ [0, 1], the convergence
is superlinear with order 1 + p.
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Final Flow-Chart for DIRK scheme

Given error tolerance TOL, initial time t0 and time step size ∆t0

For i = 1, ..., s
For k = 0, 1, ... until termination criterion with tolerance TOL/5 is
satisfied or MAX NEWTON ITER has been reached

Determine Eisenstat-Walker relative tolerance
Solve linear system using preconditioned GMRES

If MAX NEWTON ITER has been reached, but the tolerance test has
not been passed, repeat time step with ∆tn = ∆tn/4

Estimate local error and compute new time step size ∆tn+1

tn+1 = tn + ∆tn

Note: Puts additional bound on time step via nonlinear solver
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Efficiency of different Newton schemes

JFNK-FT JFNK-EW Newton-type-FT Newton-type-EW

3.0 4.1 0.7 0.9

Table: Upper bounds of convergence radius for Shu vortex problem in terms of
CFL numbers. FT stands for a fixed tolerance of 10−2, EW for Eisenstat-Walker.

JFNK-FT JFNK-EW Newton-type-FT Newton-type-EW

Iter. 32,793 6,821 45,531 10,101
CPU 17,394 4,566 19,920 10,672

Table: Comparison of efficiency of different Newton variants. SDIRK2,
TOL = 10−2
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Newton convergence: Unsteady TEMPO

Figure: Convergence of different Newton schemes for one time step during an
unsteady calculation
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Newton convergence: TEMPO for steady states

Figure: Convergence to steady state of a damped scheme of Newton-type
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Multigrid convergence: UFLO103 on structured grid

Figure: UFLO103 convergence, first 100 steps using the steady state solver, then
50 iteration of dual time stepping per time step
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Multigrid convergence: DLR TAU

Figure: DLR TAU dual time stepping for two different systems.

FAS in TAU converges to something else. Wrong BC on coarse grids?
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Newton and Multigrid

Steady States

Multigrid fast

Newton slow

Unsteady problems

Here we expect significantly faster convergence

Multigrid marginally, if at all, faster, not fast on unstructured grids

Newton significantly faster than for steady state
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Newton and Multigrid

Multigrid

Dual time stepping typically implies reusing the steady state algorithm
without changes

Thus less than optimal multigrid convergence

Redesign multigrid (see B., Optimizing Runge-Kutta smoothers for
unsteady flow problems, ETNA, 2012)

Newton

Very good scheme: Jacobian-Free Newton-GMRES with good parallel
preconditioner

Multigrid candidate for preconditioner (see above)

Compare Solving nonlinear systems inside implicit time integration schemes for

unsteady viscous flows, P. Birken, pp. 57-71 in R. Ansorge, H. Bijl, A. Meister, T.

Sonar (editors), Numerics of Nonlinear Hyperbolic Conservation Laws, Notes on

Numerical Fluid Mechanics, Springer
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Choice of initial guess

Good choice of intial guess important

Without that, we might have divergence

With it, we could be close to the solution and need very few steps

In unsteady time stepping, last value often good choice

But: For huge time steps, this might not be in radius of convergence
(see flow chart)

Extrapolation of old values can help

Stage value predictors other possibility
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Globalization

Problem: Local convergence

Solution globalization strategy via line search:

x(k+1) = x(k) + λ∆x(k), λ ∈ [0, 1]

Popular choice: Armijo line search

‖F(x(k+1)‖ < (1− αλ)‖F(x(k)‖, 0 < α << 1

For example, α = 10−4 is a suitable choice.

Search for suitable λ done in trivial way by starting with 1 and
dividing by 2 if condition not satisfied.

This method is linearly convergent

When close to solution, full steps with λ = 1 can be taken and
original convergence rate recovered
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Implementation Issues

JFNK approach extremely flexible (think change of space
discretization)

Very modular, thus high reusability

Avoids storing the Jacobian

Need vector data structure at some point

Might be good to have solution in that instead of grid based structure

Parallelization hinges on space discretization and Krylov solver

Software: PETSc, SUNDIALS, TRILINOS, TEMPO (soon)
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Preconditioning

Convergence of Krylov subspace methods (GMRES) depends strongly
on matrix.

Transform problem to get better convergence.

Use right preconditioning, since residual is unchanged (inexact JFNK)

APy = b, y = P−1∆x

In a JFNK scheme, we do not compute the matrix a priori.

Need to compute all parts of matrix needed for preconditioner.

This is where things get difficult for the first time
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Summary

Newton locally quadratic convergent

Problem 1: Need to solve equation exactly

Solved by inexact Newton scheme

Choosing proper termination criteria key to efficiency!

Problem 2: Need to store and compute Jacobian

Solved by JFNK approach

Multigrid is main competitor

Can be used inside a Newton scheme

Preconditioning is a key issue.
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