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Background and motivations

• Steady state nonlinear PDE: One “has” to solve a nonlinear problem

• Unsteady nonlinear PDE:

One may not have to solve any nonlinear problems. Popular approaches
for unsteady nonlinear problems

– explicit methods

– decoupled methods (operator splitting)

– linearly implicit methods

But with nonlinearly implicit methods, one may

– accurately capture nonlinear coupling between components

– conserve more physical quantities

– obtain long(er) time integration

But you have to solve nonlinear systems −→ this talk



Nonlinearly implicit methods

Two desirable properties of a nonlinear solver for solving F (x) = 0

• Parallelism and scalability: domain decomposition provides

parallelism, multilevel provides “processor-scalabilities”

• Robustness (for multi-physics): The algorithm converges un-

der undesirable conditions

– F (or F
′
) often has some of the following features: large di-

mension, sparse, highly nonlinear, non-elliptic, non-symmetric

– Very often, when the solution is physically interesting the

function F is mathematically bad – locally nonsmooth

(sharp gradient, boundary or internal layers, etc)



Existing nonlinear solvers

• Nonlinear iterative methods

– All (?) linear iterative methods can be modified for non-
linear problems (Richardson, J, GS, ..., CG, GMRES, ... ,
Multigrid, Domain Decomposition)

– Newton type methods for F (x) = 0 (inexact Newton,
Jacobian-Free Newton, Semi-smooth Newton, ...)

– Preconditioned Newton (left-preconditioned Newton
G(F (x)) = 0, right-preconditioned Newton
F (G(x)) = 0)

• Most of the nonlinear solvers are well-studied for the class of
monotone elliptic problems. The applicability ranges of the
solvers go far beyond the class of elliptic equations, but their
numerical/mathematical behavior are largely unknown



Focus for rest of talk – overlapping Schwarz

• Schwarz as a nonlinear solver

• Schwarz as a linear preconditioner

• Schwarz as a nonlinear preconditioner



Schwarz as a nonlinear solver

• The original Schwarz alternating method is a linear solver,

a nonlinear solver, a discretization scheme, an optimization

problem solver, a multiphysics coupling method, ...

• Theory available for elliptic problems (P. L. Lions 87, 88, and

others)

• Additive version (Cai and Dryja 94, Dryja and Hackbusch 97)

• In general, Schwarz is not too good an iterative solver in

practice (lack of robustness, slow convergence)



Schwarz as a linear preconditioner in a nonlinear
solver

• Newton-Krylov-Schwarz (Cai, Gropp, Keyes, Tidriri, 94): NKS

• The default nonlinear solver in PETSc

• Newton: Inexact Newton, semi-smooth Newton, with line-

search, trust region, different stopping conditions

• Krylov: GMRES, rGMRES, CG, ...

• Schwarz: Additive, multiplicative, restricted, hybrid, multi-

level versions (V-, W-, F-cycle, ...)



• Tested for several classes of applications

– Navier-Stokes, Euler, potential flows (low Mach and tran-

sonic)

– MHD (resistive Hall, reconnection)

– Radiation difffusion (black body radiation in optically thick

medium)

– Fluid-structure interaction (blood in artery)

– PDE constrained optimization problems (fluid control)

– Inverse problems (source recover)

– Nonlinear eigenvalue problems (with Jacobi-Davidson-Schwarz)

– ...
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Schwarz as a nonlinear preconditioner

• Two types of nonlinear problems

– Problems with global nonlinearity (nonlinear elliptic equa-
tions, for example)

– Problems with global nonlinearity plus some local, often
high, nonlinearities (boundary layers, shock waves, etc)

• Global NKS is good at removing the global nonlinearity

• Nonlinear Schwarz, if used wisely, can remove the local non-
linearities (nonlinear elimination)

• A good strategy is to combine “Nonlinear Schwarz” with
“Global NKS” (one serves as a preconditioner for the other)



Newton and subspace Newton

Suppose x(k) is the current approximate solution, a new approx-
imate solution is defined as

x(k+1) = x(k) − λ(k)s(k)

• λ(k) is the step length computed using a linesearch

• s(k) is a good search direction if a non-zero λ(k) can be found
such that

1

2
‖F (x(k+1)‖2 ≤

1

2
‖F (x(k)‖2 − αλ(k)(s(k))TJF (x(k))

The method is called a Newton’s method if s(k) is computed,
somehow, from the (preconditioned) Jacobian equation

M−1F
′
(x(k))s(k) = M−1F (x(k))



Subspace Newton

• Very often in a large nonlinear system, only a small subset of the functions
are highly nonlinear (Example: A boundary layer or a shock wave in a
large computational domain, the number of equations associated with
the shock could be less than 1% of the total number of equations)

• For example {
F1(x1, x2) = 0
F2(x1, x2) = 0

Eliminate (implicit function theorem) the small bad component x2

x2 = G(x1)

The left-over is a slightly smaller and easier to solver nonlinear system

F1(x1, G(x1)) = 0

• It is not easy to identify the bad component, and the method doesn’t work
too well in practice when both local and global nonlinearities present in
the problem



Nonlinearly preconditioned Newton methods

• References: Cai and Keyes, SISC 2002, Cai, Keyes, and Marcinkowski,
IJNMF 2002, Hwang and Cai, JCP 2005, Cai and Li, SISC 2011

• Consider a nonlinear system (x1 and x2 may have overlapping compo-
nents) {

F1(x1, x2) = 0
F2(x1, x2) = 0

• Nonlinear Schwarz preconditioning: Let T1 and T2 be the solutions of

F1(x1 − T1, x2) = 0 and F2(x1, x2 − T2) = 0

• A nonlinearly preconditioned system

T1(x1, x2) + T2(x1, x2) = 0,

which is solved by a global Newton’s method (ASPIN)

• The two systems have the same solution, and the second one often has
better conditioning



Nonlinearly preconditioned Newton methods

• In ASPIN, both local and global Newton are used to remove

local and global nonlinearities

• This can be regarded as a left preconditioned Newton since

the nonlinear function is modified by the local Newton

• The solution is not modified (proof exists for elliptic prob-

lems)

• One- and two-level additive versions available; other versions

are yet to be studied



Some Examples Using NKS



SWE in Curvilinear Coordinate on Cubed-sphere

∂Q

∂t
+

1

Λ

∂(ΛF )

∂x
+

1

Λ

∂(ΛG)

∂y
+S = 0, (x, y) ∈ [−π/4, π/4]2 (SWE)

Q =


h

hu

hv

 , F =


hu

huu+ 1
2gg

11h2

huv + 1
2gg

12h2

 , G =


hv

huv + 1
2gg

12h2

hvv + 1
2gg

22h2

 , S =


0

S1

S2


with source terms

S1 = Γ1
11(huu) + 2Γ1

12(huv) + fΛ
(
g12hu− g11hv

)
+ gh

(
g11∂b

∂x
+ g12∂b

∂y

)

S2 = 2Γ2
12(huv) + Γ2

22(hvv) + fΛ
(
g22hu− g12hv

)
+ gh

(
g12∂b

∂x
+ g22∂b

∂y

)



The Cubed-sphere

I II IIIIV

V

VI

• Sadourny, MWR 1972

• Ronchi, Iacono, and Paolucci, JCP 1996

• Rancic, Purser, and Mesinger, QJRMS 1996

• Nair et al 2005, Rossmanith et al 2004, Putman et al 2007...



Strong-scaling tests: Compute Time

Fixed mesh: 6144× 6144× 6 (DOF=0.68B)

From 4608 to 82944 cores, parallel eff. = 60%



Weak-scaling Tests: Compute Time

Max mesh: 10240× 10240× 6 (DOF=1.8B)

The compute time increases 6.3X as the # of cores increases 1600X



2D compressible Euler model

∂Q

∂t
+
∂F

∂x
+
∂G

∂z
+ S = 0,

Q =

 ρ
ρu
ρw
ρθ

 , F =

 ρu
ρu2 + p
ρuw
ρuθ

 , G =

 ρw
ρwu

ρw2 + p
ρwθ

 , S =

 0
0
ρg
0


• Simplified from 3-D Euler: restrict to x− z plane, omit Coriolis force

• Prognostic variables: density ρ, velocity (u,w), potential temperature θ

• State equation: p = p00

(
ρRθ
p00

)γ
• Constants: p00 = 1013.25 hPa, g = 9.8m/s2, cp = 1004.67 J/(kg ·K),
cv = 717.63 J/(kg ·K), R = cp − cv = 287.04 J/(kg ·K), γ = cp/cv ≈ 1.4

• Physical dissipation: only for momentum/potential temperature eqs

∂ρφ

∂t
+ ...−∇ · (νρ∇φ) = 0, forφ = u,w, θ

• Reference: C. Yang and X.-C. Cai, A scalable fully implicit compressible
Euler solver for mesoscale nonhydrostatic simulation of atmospheric flows,
SIAM J. Sci, Comput., 2014 (to appear)



2D compressible Euler model: shifted system

∂Q

∂t
+
∂F

∂x
+
∂G

∂z
+ S = 0,

• The Euler model is a nonhydrostatic model at mesoscale

• Shift to recover the hydrostatic state (a special solution)

Q =

 ρ′

ρu
ρw

(ρθ)′

 , F =

 ρu
ρu2 + p′

ρuw
ρuθ

 , G =

 ρw
ρwu

ρw2 + p′

ρwθ

 , S =

 0
0
ρ′g
0


where

ρ′ = ρ− ρ̄, p′ = p− p̄, (ρθ)′ = ρθ − ρ̄θ̄
and ’bar’ indicates hydrostatic state: ∂p̄

∂z
= −ρ̄g

• The flux Jacobians remain unchanged, e.g.,

J1 =
∂F

∂Q
=

 0 1 0 0
−u2 2u 0 c2/θ
−uw w u 0
−uθ θ 0 u

 , c =
√
γp/ρ.



Fully implicit method

• Secord-order ESDIRK with adaptive time stepping, and second-order cell-
centered finite volume

• Jacobian-free NKS for the nonlinear algebraic system with first-order cell-
centered finite volume based Schwarz preconditioner

• Pointwise ordering of the unknowns and equations
X = {(q1, q2, q3, q4)1,1, (q1, q2, q3, q4)2,1, . . . }

• Each entry of the Jacobian matrix is a 4× 4 block

J =



× × ×
× × × ×
× × ×

× × × ×
× × × × ×
× × × ×
× × ×
× × × ×
× × ×


n×n(block)

× =

 ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



• Incomplete factorizations in the preconditioner solve are based on this
point-block structure (the 4×4 blocks are solved exactly with an analytic
inverse)



Newton-Krylov-Schwarz

• The nonlinear system F(X) = 0, at time step n

• Suppose X` is the current approximate solution

X`+1 = X` + λ`S`, ` = 0,1, ...

• Initial guess X0 = X(n−1): solution of the previous time step

• λ` is the step length computed using a linesearch

• S` is the Newton correction vector, by approximately solving

J`(X`)M−1(MS`) = −F(X`)

using restarted (f)GMRES with relative tolerance η

• J` is the Jacobian, it is never generated (we use Jacobian-free method)

• M−1 is a Schwarz preconditioner



• Ω = ∪kΩk (non-overlapping). Ωk → Ωδ
s: extend Ωk with δ layers (overlap-

ping).

• One-level restricted additive Schwarz (RAS) preconditioner

M−1
one =

np∑
k=1

(R0
k)TB−1

k Rδ
k.

• Two-level Schwarz (coarse first, cascade)

x: current approximate solution, r = b− Jx: residual.

x(i) := x+M−1
c r, x(ii) := x(i) +M−1

oner
(i)

– GMRES is switched to fGMRES for the outer iteration

– One-level RAS can be used on both fine and coarse level, with inde-
pendent adjustable parameters

• The subdomain matrices in the Schwarz preconditioners are generated
based on a first-order spatial discretization (AUSM+up with 1-st order
reconstruction)



A test case: Schär mountain

• From: Schär et al 2002 MWR

• Physical domain: [−25 km,25 km]× [h(x),21km]

• Initial condition

– Constant mean flow of ū = 10m/s

– Uniformly stratified state with ground temperature θ̄0 =
280K and Brunt-Vaisala frequency N = 0.01/s

– Mountain profile (five peaks)

h(x) = hme
−(xr)2

cos2
(
πx

λc

)
where hm = 250 m, r = 5 km and λc = 4 km

• Non-reflecting boundary conditions: sponge layers outside the
domain of interest [−10 km,10 km]× [0,10 km]



Strong scaling (# of unknowns 75 millions)

Strong scaling results for solving the Schär mountain problem on

a 6144 × 3072 mesh to t = 100 s. For the explicit SSP RK-2

method, the time step size is ∆t = 0.01 s; for the fully implicit

method, the time step size is ∆t = 10 s and the overlap is δ = 2.

Newton/Step GMRES/Newton Compute time (s)
np ILU(1) LU ILU(1) LU ILU(1) LU

576 2.1 2.1 69.6 34.6 222.6 299.8
1152 2.1 2.1 70.9 37.3 108.3 140.2
2304 2.1 2.1 74.5 41.9 57.9 72.3
4608 2.1 2.1 75.7 44.8 29.1 37.8
9216 2.1 2.1 82.1 52.0 16.1 20.2

18432 2.1 2.1 84.5 55.5 8.3 10.4

Note: The parallel speedup is nearly linear



Weak scaling

Weak scaling results of the fully implicit method and the explicit

SSP RK-2 method.

np 72 288 1152
Mesh size (in x) 576 1152 2304
Mesh size (in z) 288 576 1152

Implicit time steps 38 66 89
Total Newton 135 187 241
Total GMRES 14035 28332 54537

Total compute time (s) 115.7 254.7 502.9
Explicit time steps 360000 720000 1440000

Total compute time (s) 1863.7 3716.6 7456.3



Flow passing a complete wind turbine with
tower/rotor

The flow is modeled by the 3D incompressible Navier-Stokes

equations defined on a partial moving domain



Spatial discretization

We use a P1−P1 stabilized finite element method in the spatial
domain. The semi-discrete stabilized finite element formulation
reads as:

Bs(us, ps; Φs, ψs) + Br(ur, pr; Φr, ψr)− Fs(Φs, ψs)− Fr(Φr, ψr) = 0

where

Bs(us, ps; Φs, ψs) = ρ

∫
Ωs

t

∂uhs
∂t
·Φh

sdΩs
t + µ

∫
Ωs

t

∇uhs :∇Φh
sdΩs

t

+ρ

∫
Ωs

t

((uhs · ∇)uhs ·Φh
sdΩs

t −
∫

Ωs
t

phs∇ ·Φh
sdΩs

t

+

∫
Ωs

t

(∇ · uhs)ϕhsdΩs
t +

∑
K∈T h

(
∇ · uhs , τc∇ ·Φh

s

)
K

+
∑
K∈T h

(
∂uhs
∂t

+ (uhs · ∇)uhs +∇phs , τm(uhs · ∇Φh
s +∇ϕhs)

)
K

Fs(Φs, ψs) =

∫
Ωs

t

f ·Φh
sdΩs

t +
∑
K∈T h

(
f , τm(uhs · ∇Φh

s +∇ϕhs)
)
K



Temporal discretization

An implicit backward Euler finite difference method is used in the

temporal domain, that is, for a given semi-discretized system

dU

dt
= L(U),

the backward Euler scheme

Un −Un−1

∆t
= L(Un)

for the time integration. In each time step, we need to solve a

nonlinear system:

F(Un) = 0.



Additive Schwarz preconditioner

Partition the grid into subdomains



One-level restricted additive Schwarz
preconditioner

M−1 =

Np∑
`=1

(R0
` )T J−1

` Rδ
`

• R0
` and Rδ

` are restrictions to the degrees of freedom in the nonoverlapping
subdomain Ω` and the overlapping subdomain Ωδ

`

• J` = Rδ
`J
(
Rδ
`

)T
is a restriction of the Jacobian matrix

• Point-block incomplate LU factorization (ILU) is used to obtain the in-
verse of the subdomain Jacobian J−1

`

• The point-block ILU means that we group all physical components as-
sociated with a mesh point as a block and always perform an exact LU
factorization for this small block in the ILU factorization



Wind turbine model

A three blade wind turbine with SERI 5807 root region airfoil

and SERI 5806 tip region airfoil

Blade length = 63m

Tower height = 90m

Cylinder: D = 378m, H = 493m

Wind velocity = 15 m/s

Rotor velocity = 22 rpm

Fluid viscosity µ = 1.831× 10−5kg/(ms)

Number of elements = 1.1× 107

Re = 1.0× 108



Parallel Performance

Jacobian matrix: Analytic. Subdomain solve: point-block ILU(1).

Overlap 1

np Newton GMRES Time (s)

512 3.0 51.72 127.3
1024 3.0 52.77 77.7
1536 3.1 53.94 67.5
2048 3.0 57.42 53.0

DOF = 9.0× 106



A fluid-structure interaction problem

• The linear elasticity equation for the wall structure

ρs
∂2xs

∂t2
+ α

∂xs

∂t
−∇ · σs = fs in Ωs

• The incompressible Navier-Stokes equations for the fluid in
the arbitrary Lagrangian-Eulerian (ALE) framework

ρf
∂uf
∂t

∣∣∣∣
Y

+ ρf [(uf − ωg) · ∇]uf −∇ · σf = 0 in Ωf(t)

∇ · uf = 0 in Ωf(t)

• The Laplace equation for the fluid domain movement

∆xf = 0 in Ω0

• Coupling conditions on the fluid-structure interface

σs · ns = −σf · nf , uf =
∂xs

∂t
, xf = xs



A partitioned fluid-structure domain

Example partition of a fine and a coarse mesh into 4 subdomains

(red=fluid, gray=artery)



Implicit finite element discretization of the fully
coupled system

Find xs ∈ Xh, ẋs ∈ Xh, uf ∈ Vh, pf ∈ Ph and xf ∈ Zh such that

∀φs ∈ Xh, ∀ϕs ∈ Xh, ∀φf ∈ Vh,0, ∀ψf ∈ Ph, and ∀ξ ∈ Zh,0,

Bs({xs, ẋs}, {φs, ϕs};σf) +B({uf , pf}, {φf , ψf};xf) +Bm(xf , ξ) = 0

Time discretization: We use a fully-implicit method for the

time domain; e.g BDF2

• At the nth time step, we obtain the solution xn by solving a
sparse, nonlinear algebraic system

Fn(xn) = 0,

where xn = (unf pnf xnf xns ẋs
n)T



About F

• All terms of the equations are treated implicitly

• The discretized system F is highly nonlinear

– The nonlinearity comes through the convective term, the stabilization
terms and dependency of the moving mesh

• The system F is of mixed type

– The fluid equations are nonlinear parabolic

– The structure equations are linear hyperbolic

– The moving mesh equations are elliptic

• The coupling conditions on the interface are enforced implicitly as part
of the system F

• When the resistive boundary condition is used, all equations on the outlet
boundary are coupled



Monolithic Newton-Krylov-Schwarz

At each time step we solve the nonlinear system F(x) = 0 with
an inexact Newton method with cubic linesearch

• Point-block ordering: All physical components associated with a mesh
point is grouped together as a block. Point-block versions of LU and ILU
are used to obtain the inverse or approximate inverse of the subdomain
Jacobian

• Solve a preconditioned linear Jacobian system to find the Newton correc-
tion s(k), by using a Krylov subspace method

J(x(k))M−1
k Mks

(k) = −F(x(k))

Here J is a full Jacobian matrix computed analytically Update the ap-
proximation x(k+1) = x(k) + θ(k)s(k), where θ(k) ∈ (0,1] is the step length
parameter

• M−1
k is a restricted additive Schwarz (RAS) preconditioner, with point-

block subdomain solve



Parallel performance

One-level Two-level
DOF np Newton fGMRES time Newton fGMRES time

256 2.0 76.50 21.92 2.0 10.30 18.32
1.24 · 106 512 2.0 102.30 9.58 2.0 11.40 8.27

1024 2.0 129.45 6.30 2.0 12.45 4.42
512 2.0 121.50 104.25 2.0 15.45 87.67

4.61 · 106 1024 2.0 146.90 44.94 2.0 14.40 35.64
2048 2.0 193.55 20.11 2.0 18.50 15.77
3072 2.0 219.25 18.71 2.0 20.70 7.91



Inexact Jacobi-Davidson-Krylov-Schwarz for a
nonlinear eigenvalue problem in 3D

The 3D Schrödinger equation is discretized with a cell-centered
finite volume method on an uniform mesh in Cartesian coordi-
nates The matrix polynomial eigenvalue problem takes the form

(λ5A5 + λ4A4 + λ3A3 + λ2A2 + λA1 +A0)u = 0

Computational challenges:

• nonlinearity

• the eigenvalues of interest are located in the interior of the
spectrum

• high accuracy is requied, resulting in large dimension of co-
efficient matrix



Input: Ai for i = 0, · · · ,m, and the maximum number of itera-

tions k

1. Let V = [v]. v is an initial guess eigenvector with ‖v‖2 = 1

For n = 0, · · · , k
2. Compute Wi = AiV and Mi = V HWi for i = 0, · · · ,m
3. Select the desired eienpair (φ, s) with ‖s‖2 = 1 from the

projected polynomial eigenproblem
(∑m

i=0 φ
iMi

)
s = 0

4. Compute u = V s, and r = Aφu
5. If the stopping criteria is satisfied, then stop

6. Compute pn = A′φnun =
(∑m

i=1 iφ
i−1
n Ai

)
un

7. Solve approximately the correction equation with Schwarz

preconditioning∥∥∥∥∥
(
I −

pu∗

u∗p

)
Aφ(I − uu∗)t+ r

∥∥∥∥∥
2
≤ εn‖r‖2, t ⊥ u

8. Orthogonalize t against V , set v = v/‖t‖2, then V ← [V, v]

End for



Results for the first two eigenpairs

• Matrix size: 161,101,649× 161,101,649

One-level Schwarz Two-level Schwarz
np JD FGMRES Time(s) JD FGMRES Time(s)

5120 4 185.25 42.48 4 38.75 7.48
7168 4 185.25 29.20 4 39.50 6.36
9216 4 186.00 23.23 4 38.75 5.34
10240 4 186.00 22.46 4 39.75 4.84

One-level Schwarz Two-level Schwarz
np JD FGMRES Time(s) JD FGMRES Time(s)

5120 4 251.75 71.10 4 34.75 9.47
7168 4 255.75 47.96 4 34.25 6.20
9216 4 254.50 39.29 4 34.50 5.64
10240 4 256.50 37.37 4 34.00 5.29



Residual histories of the first 6 eigenpairs

it e0 e1 e2 e3 e4 e5

0 2.59e+00 4.25e+00 4.25e+00 9.43e+00 5.46e+00 7.34e+00
1 7.62e−02 2.23e−01 2.23e−01 4.05e+00 5.96e−01 1.46e+00
2 1.92e−04 3.45e−04 3.38e−04 8.93e−01 6.65e−03 8.27e−02
3 2.15e−08 7.00e−08 4.44e−08 8.20e−02 7.10e−07 8.51e−05
4 3.02e−12 7.00e−12 1.46e−11 7.35e−04 4.57e−11 6.59e−08
5 1.07e−07 1.89e−11
6 3.63e−11

Note: quadratic convergence!



Sometimes, Newton-Krylov doesn’t converge or
converges for a while and then stagnate
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si
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What do I do ?



Schwarz as a nonlinear preconditioner for
Newton for problems with high local

nonlinearities

• Additive Schwarz as a left preconditioner is not hard to program if there
is a NKS based code available, but not too easy since F (·) needs to
be replaced. On the other hand, if additive Schwarz is used as a right
preconditioner, F (·) doesn’t have to be touched at all

• Basic idea: Replace F (x) = 0 by F (G(y)) = 0. G(y) is some locally
corrected x

• The preconditioner G(·): Nonlinear elimination or nonlinear Schwarz,
which can be considered as “multiple nonlinear eliminations”

• Or, we can consider G(·) as a way to improve the initial guess before
every Newton iteration (BTW, Newton is a one-step method; i.e., every
solution is simply an initial guess for the next Newton iteration)

• X.-C. Cai and D. E. Keyes, SIAM J. Sci. Comput., (2002)
X.-C. Cai and X. Li, SIAM J. Sci. Comput., (2011)



Nonlinear elimination – peak removing

Consider a nonlinear problem F (x) = 0 defined on Ω with the

current approximate solution xc

• Identify the worst region. A peak of F is a region ω ∈ Ω such

that ‖F (xc)‖2(ω) is large

• Solve a local nonlinear problem

F |ω(xω) = 0, with boundary condition xω|∂ω = xc|∂ω

• Locally correct the solution

xnew =

{
xω in ω
xc in Ω \ ω



Pros and Cons of nonlinear elimination

current solution current residual function



Schwarz preconditioners

• Rδi , R
0
i restriction with and without overlap. δ is the overlap-

ping size

• Additive Schwarz

Linear :
N∑
i=1

(Rδi )
TA−1

i Rδi Nonlinear:
N∑
i=1

(Rδi )
TF−1

i (Rδix)

• Restricted additive Schwarz

Linear :
N∑
i=1

(R0
i )TA−1

i Rδi Nonlinear :
N∑
i=1

(R0
i )TF−1

i (Rδix)



Effect of nonlinear RAS preconditioning

Two-dimensional driven cavity flow problem with high Reynolds

number
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Comparing NKS and RAS-NKS
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Driven cavity flow (128× 128 mesh, tol=10−6)

Global Newton iterations
# of processors Re = 103 Re = 5× 103 Re = 104 Re = 5× 104 Re = 105

8× 8 = 64 4 6 6 7 7
8× 16 = 128 4 5 6 7 7
16× 16 = 256 4 5 6 7 8

Average GMRES iterations
8× 8 = 64 64 59 55 57 57
8× 16 = 128 84 68 63 58 57
16× 16 = 256 114 102 101 90 86

Ranges of the subdomain Newton iterations
8× 8 = 64 0 ∼ 5 0 ∼ 7 0 ∼ 7 0 ∼ 9 0 ∼ 10
8× 16 = 128 0 ∼ 4 0 ∼ 5 0 ∼ 5 0 ∼ 6 0 ∼ 7
16× 16 = 256 0 ∼ 4 0 ∼ 5 0 ∼ 6 0 ∼ 8 0 ∼ 9

Computing times (sec)
8× 8 = 64 2.581 2.703 6.469 7.653 8.095
8× 16 = 128 1.131 1.196 1.233 1.894 2.010
16× 16 = 256 0.6272 1.481 0.7853 1.619 1.970



Some final remarks

• For problems with global nonlinearity, NKS is a good general purpose
parallel solver. Multilevel maybe necessary if the number of processors is
large

• For problems with global and local nonlinearities, a combination of full
space Newton and subspace Newton offers a good strategy

• For problems with only local nonlinearities, subspace Newton is often
sufficient

• It is often difficult to tell what types of nonlinearities a problem may have

• The norm of the residual function, ‖F (x)‖2, is often not a good monitor,
unfortunately all existing nonlinear theory are based on ‖F (x)‖2

• Many parameters (stopping conditions)

• Some papers can be found at

www.colorado.edu/cs/users/cai


