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Inexact Newton
Consider F'(z)=0 where F:R" —R"
Typical Newton algorithm
while |F(z)| > e
(1) Solve F’(aﬁn)s = —F(:z:n)
2z =z +As (with ) chosen for sufficient decrease)

end

Inexact Newton:
W |P(z,)+F'(z,)s| <l (s, )

Use some sultable solver for computing s
Proceed with line search (2)
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Inexact Newton Iteration

Inexact Newton: HF + F’ H <n HF

Use Krylov subspace methods, like GMRES, CG, BiCGStab for
approximately solving

F’(zn)s = —F(:):n>
The great advantage of such iterative methods is that we only
need a matrix-vector product to solve the system, not the

matrix.

Other methods with that property exist, sometimes (nonlinear)
multigrid methods can be implemented in a similar fashion.
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Approximating the Jacobian-vector Product

Solve F’(mn)s:—F(a:n>, r =0—r :—F(azn)

0 0

Approximate matrix-vector product

r

. 0>T)_F<$n)

0
b
o (7.

n

F(xn—l—ea T

where s (a;n, ro) is a scaling factor chosen for accuracy

Sequence of such directional derivative approximations.
Each approximates the Jacobian slightly differently, possibly
destroying special structure.

Preference for robust methods.
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Krylov Methods Crash Course

Consider Az = b. Initial guess x, — . = b — Az,
Instepm:z =z, + 2 Where

z €K (A,fr’o) = span {TO,AT’O,A2T’O,...,Am_1TO}
Krylov space is a space of polynomials in A times vector r

So,z =p . (A) roand z =z, +p (A) 7

r =b—Az_ =b— Az —Ap (A) =1 —Ap (A) r
ro=gq. (A) ro= (I —Ap (A)) r

Errorie =Ab—z =A" (b - Afﬂm) = A",
e = A_lqm (A) ro=q (A)A_lfro =q_ (A) e,
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Choices from Krylov Space

Givenz andr, =b— Az,pickz € K (A, To) andr =z, +2z

Several possibilities. Two particularly important ones are:
Find z suchthatllr l=Ir —Az [isminimal

Find z suchthatlle || = 2 —(z, + z )Il is minimal

The second one is possible in practice for special norms, like the

H:z;HA = (Ax,a:)m if A Hermitian positive definite

Other possibilities exist, in particular non-optimal ones that
allow very cheap iterations (BiCGStab)
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Approximation by Matrix Polynomials
Let A=VAV ", let A(A) ccC.

Ifp (t) ~ % forall ¢t € {2,then p . (A) =V diag(pm_1 (AJ)V‘I ~ A

Let » =Vp. Then p | (A) r=) _ UD, ()\Z.)pz, ), % =A'r,

ro=q_ (A) S (I —Ap (A))ro = Z/Ui (1 —Ap ()\i>)’0i ~ 0

If we can construct such polynomaials for modest m, we have an
efficient linear solver.

This is possible if the region (2 is nice — small region away from origin:
clustered eigenvalues

If this is not the case, we improve by preconditioning: PAx = Pb s.t.
PA has clustered eigenvalues and product with P is cheap.
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Convergence Bounds

Residual at iterationm: » = p (A) T optimal (2-norm)

Eigenvalue bound Hrm H <

| 1oL P aea(a) ‘p M

»(7)

FOV bound HTmH < 2 HTOH min - maxveW(A)

m,
p(0)=1

Alternative FOV bound

HTmH = 2HTOHmin§<€OJ>Ym1 HPQHmaleeW(Q*AQ) p(%) * HPYHmaXVQGW(Y*AY) p<72)]

»()

min max

£(e)
pell v€eC.

Pseudospectrum bound H H < H H e
Tr p(0)21
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Krylov Methods Crash Course
Consider Ax = b, initial guess z,, and residual 7, = b — Ax,
Compute optimal update z from
K (A, ro) = span{r,, Ar,...,A" 'r }: (for example)

min{Hb—A(zO +z)2 lze K (A,fro)} < min

z€K (A,ro)

o= AzH

2

Let K, =1, Ar, A'r, -+ A" 5] then z = K¢,

and we must solve the following least squares problem

AK (~1n, & [A?“O A’r, ---Am'ro}( T,

r =x +2z and r =r —Az
m 0 m m 0 m

Do this accurately and efficiently every iteration for increasing m.
One such method: GMRES - Saad/Schulz's6
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Minimum Residual Solutions: GMRES

Generate iteration-wise an orthogonal basis for K (4,7, ).

The Arnoldi algorithm (iteration): Let v, =T

for k =1..
U1 = Av
for j=1.. k
h’j,k =, Uk:+1’ Upn = Y — hj,kvj;
end
hk+1k H Ui ) vk+1 Uk+1/hk+1,k;
end

Arnoldirecurrence: AV =V H_

| VAN 74 - (orthogonal),

m+1" m-+1

H = Vm +1A V (upper Hessenberg)
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Minimum Residual Solutions: GMRES

Using AV =V H, , we solve min {HT‘O — Az”2 lz€ K (A, r )} as follows.

Let 2z = VmC , and minimize

T A Vm(: H2 over all m-vectors C.

Note that this is an 7 x m least squares pro]olem (as before).

Now substitute T, = Vm+1771 HTOH2 and A Vm = Vm+1£m. This gives

vaﬂnl Hrouz B Vm-l-lﬂmc

) va+1 (771 H"“oHQ B ﬂm() " HTOH? - EmCHQ

, p—
The latter is a small (m + 1) X m least squares prol)lem we can solve Ly standard
dense linear a]ge]ora techniques (e.g. using LAPACK)

We can eXploi‘c the structure of H and the least squares pro]olem to
1. do this elqiciently,

2. compute the residual norm without computing the residual
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Minimum Residual Solutions: GMRES
GMRES: Ax =10

Choose Z,, tolerance g; set = b— A:EO; vV, =T

while ||7’k ||22 e do

7“02,]4;:0.

Ek=k+1
Uy = A
for j=1...k,
* o ~ ~
h’j,k: =Y vk+1’ Ve = Y — hj,kvj;
end
hk+1,k; — Hkarl o7 Y = vk+1/hk+1,k;

Solve LS min_ ||n, | H —H.C ( = HT H ) by construction
¢l ol 5 k|l
(actuaﬂy we upda’ce the solution rather than solve from scratch — see la’cer)
end
r, =z, +V.(;

=1y~ Ve HiG, = Vi (0 - B, ox sl = b~
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Conjugate Gradient Method

Hermitian matrices: Error minimization in the A-norm

We are solving Ax = b with initial guess xo — ro = b — Axo and
X 1s the solution to Ax = b.

The error at iteration i 1s & =X — (X0 + Z;),

where z;eK'(A, ro) is the ih update to the initial guess.

Theorem:
Let A be Hermitian, then the vector z; Kf(A, ro) satisties

zi=arg min{[[X—(xo+2)lla:z€ K'(A,ro)}iff ri =ro— Az
satisties ri L K'(A,ro).

The most important algorithm of this class 1s the Conjugate Gradient
Algorithm.
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Conjugate Gradients method
Solve Az = b, Choose z, — . =b — Az,
p,=r;1=0
While || > & do
i=i+1;

0, = (117 ) /(AP 1P

T, =T, _ +ozp r=T

1

3= ()l om. )

;i — 6@'])2'—1

—a Ap.

-1

End

Preconditioning needs to maintain symmetry:
e Precondition on both sides: L AL "

e Maintain symmetry wrt to inner products including preconditioner
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Preconditioned CG

e Preconditioner may be based on some linear operator, say,
fast solve for differential operator (Laplacian).

e Hard to ‘split’ such an operation.

e Change of inner product can help.

Preconditioned matrix L "L 'A4, inner product<:c, y>ﬁT — "Ll x
<E_TZ_1A:E, y>E£T =y "L L "L Ar = y" Ax
. I <:1:, ffoflAy>

LI*

Using LI" inner product allows to do one-sided preconditioning
in CG
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CG 1s Sensitive

CG for problem with slight nonsymmetry

_/__.

0 100 200 300 400 500 600
1terations
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BiCGStab
Choose r, —r =b—Az;i=0;w, =1
Choose 7, typically best random but also 72 =7,
while HTH >e & w = 0,do

p,, =7 r_;if p_ =0 stop (imethod fails)
iti=1,p =r

-1

else 6@-1 - (’Oi—l/pz'—Z)(ai—l/wi—l); P, =7t 6@'—1 (pi

o =p. fTvZ.; S=T _ —Qu.
if Hs” < e break; z. =z +ap and stop
t=As;w =t's/t't

T =2  +oap =ws T =8—wl

_wz 1Uz 1
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BiCGStab

BiCGStab is not based on any optimality property

In general, convergence is often fairly fast (not
much worse than GMRES)

Method may behave erratically and breakdown

Iterations, cost per dimension of Krylov space or per
matvec, are cheap

Method does not need symmetry or any other
property
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Preconditioning

PAr=Pb or APi=0b or PAPT=DPb
Generating the polynomaials (basis) requires only a
matrix-vector product (matvec)

Matvec can be done approximately by function
evaluation

Preconditioning is complicated if we do not have the
matrix available

Precondition inside the function evaluation (limited
possibilities)

Approximate the linear operator and use approximation to
compute a preconditioner

Many ways to approximate matrix using only
matvecs (function evaluations)

May be expensive but we can update once we have it



" J
Preconditioning
Solve F'(z, )s = —F (x, ):
Right preconditioning F’ (a;n)Mg = —F (azn) and s = Ms
Left preconditioning MF’ (:I:n)s — _MF <$n>

Left preconditioner: MF’ (acn)w A (1 / 5)M [F (xn + e’w) —F (xn )]

Right preconditioner: F’ (:z:n)M’w (1 / 5)[F (fEn —- 5Mw) —F (:z;n )}
Often include the preconditioning in nonlinear system:

G(z)=F(Mz)=0 or  G(z)=MF|(z|
F'(Mz)Ms = —F (Mz) G'(z) = MF'(z)

Drawback is that preconditioner fixed over nonlinear iterations
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Further discussion

m GMRES robust but expensive unless convergence
fast — 0(nm?)

m Can restart but often bad for convergence

m This has prompted methods with smarter ‘restart’
GMRESDR (Morgan), GCROT (dS), GMRESR/*
(vdVorst/Vuik)

m Implicit preconditioning may lead to varying

preconditioner per iteration - FGMRES (Saad),

m GMRESR/* (vdVorst/Vuik'94), GCRO(T) (dS'95 '99)
allow varying preconditioner in so-called inner
1terations

m Basic idea underlying these variants is that some of
the algebraic relations (optimality over subspace) in
Krylov methods are preserved, whereas others
(which search space) are relaxed
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Probing

We can think of the previously generated search spaces and
their image under the matrix (Jacobian) as building a
preconditioner (using only matvecs).

This idea can be exploited more generally. Use matvecs with

selected vectors to approximate or reconstruct the matrix and
then build a preconditioner:

Probing or sparse Jacobian/Hessian approximation

How to build a matrix approximation using only matvecs?

e Know or compute or guess structure of the matrix and define
an (approximate) nonzero pattern

e Use discrete optimization to compute the ‘probing’ vectors
and minimize (approximately) the number of vectors.
o Compute approximate inverse of approximate Jacobian
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Probing

#® |dea: Multiply with carefully chosen vectors of 1's and O’s
(Curtis, Powell & Reid 1974).

& Example:

al bg I 0 0 al (_)2 0
c1 aos by O 1 0 c1 as b3
co az ba 0 0 1 = by o a3

c3 a4 b I 0 0 as bs c3

C4a Qg5 O [ 0 ca as; 0

Uses vectors ¢ + ey, 9 + ¢35 and es.
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Probing

® This is a graph coloring problem (Coleman & Moré 1983).
® Adjacency graph of A: Has (i, j) edge if A; ; is non-zero.

& Problem: Distance-2 coloring of adjacency graph of matrix
(McCormick 1983).

X X
X XX
XXX
XXX
XX
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Probing

& For non-banded matrices, we can use the same technique
(Coleman & Moreé 1983; Cullum & Tuma 2004).

X X
XX
XX
X
X X

X
X

X

X
X

X
XXX

XX

8

Y
Ay

5

)

D

@

@
1

2

9

6

3

& Survey Article: Gebremedhin, Manne & Pothen, 2005.

Probing methods for saddle-point problems, Siefert & de Sturler;
Elec. Trans. Numer. Anal. (ETNA), 2006
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Probing

s

A = Structured Probing(A € R"*")

1. Choose a sparsity pattern H for the output matrix A.
2. Color adjacency graph of A and generate vector of colors.

3. Generate probing vectors z;.....x,, one for each of p
colors.

4. For each probing vector, x;, multiply w; = Ax;.

5. Build A using sparsity pattern H and vectors wy, . .. , Wh.

—~

Note: If # and A have same sparsity pattern, A = A.

Note: Number of colors (p) small, regardless of problem size

= SP is cheap!
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FGMRES

FGMRES maintains an Arnoldi-like recurrence

1—m 171 m

Az =V H,  where V'V =] andZz = [pv P ’Um]
Update z = Z ¢ isnotfrom K (A |or K, (PA,Pr,)

Algebraic structure and orthonormal columns of V. allow
similar minimization as for GMRES

Varying preconditioner may be useful
e when some function is applied to multiply vector by
preconditioner and this leads to variation in exact operator
e When iteration is used to approximate a linear operator (for
example multigrid iteration for fast Poisson solver)
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FGMRES (Saad’93)

Solve Ax = b allow variable preconditioner
Choose z,, tolerance ¢; set r, =b— Az; v, =1, / H%\L’ k=0.

while |7, [,> e do

k=Fk+1

2, = b, U = A2,

for j=1...k

hjk — Uﬁkﬂ; 6k+1 — 6k+1 - h] kY,

end

hk+1,k - H’ﬁk‘HHQ; Vepr = 6k+1/hk+1,k:; {AZ — Vk+1H }

Pick update z, = Z ¢,

Solve LS min ||V, 7, |7 = min_|n, ”'rO”2 —H,C 2 ( — HTkH2>
end
r, =2z, +2.C;
no=n =V, HG =V, (n|n]| - H, ) or simply 5, =b - 4z,
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Other Variants

Similar ideas underly other solver variants. Consider GCR
method (Eisenstat, ElIman, Schultz’83) — algebraically equivalent
to GMRES but more expensive, possible breakdown.

GCR: Az =b
Choose z, (e.g. z, = 0) and tolerance e;set » =b— Az ;i=0

while I 1,> = do

i=i+1u =r_;c =Au

i—17 7 1
for j=1,..:i-1do
U = u — ujc;cl.; c.=¢c — cjc;ci
end
u = /lelic =c /lel,

*
—CCT
i i

*
Ly =Ty + WCT T =T i—1

7

end

1
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Solver Variants

GCR builds following algebraic relations:
Range(Um) =K (A, 7°0>, AU =C, and CC =1

At each step the method computes minimum 2-norm residual by
setting » L C .

ro=71 — C’mC;fQ'rO and T =T, + Uij;'ro =z, + A_lc'mC;;ro

Krylov space as search space arises because v, = r, but this can

be generalized. Algebraically, any vector is okay (though
probably not equally successful).

So, replace residual in v, = r, by any good approximation to the
error (the error would give convergence in one step).
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Solver Variants

In GMRES* v, = p_ (A) r Of u =p (AP)TO computed by m

steps of an inner Krylov method (if GMRES then called
GMRESR)

InGCRO u, =4 'p_ (([ - C’kC’kT)A) . Or
u = A"'p, ((1-C.C7)AM)sr,

again computed by some inner Krylov method, while
maintaining orthogonality to outer search space (optimality)
If GMRES used inside then optimality over entire search space

Range (Uk> + Range (Vm>

But search space no longer Krylov space — in return significant
flexibility. This formed the basis for methods that recycle Krylov
subspaces for sequences of slowly changing systems (224 talk).
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GCROT: Selective orthogonality

m Restarted GMRES versus GCROT, which maintains
orthogonality against sequence of selected subspaces.

Time-wise the advantage of GCROT is even larger as working
with a smaller subspace is much faster.

logl()”r”Z

Convection-diffusion problem with strong convection

g’mres(m) -

0

200 400 600 800 1000 1200

nr. of matrix-vector products

log,lIll,

+

1. gerot(30,20)
2. gerot(20,13) T

gmres (5 0)

. .1 . gmlres(150) .
0 100 200 300 400 500 600 700

nr. of matrix-vector proc],ucts




" A
Good reading

m GMRES: a generalized minimal residual algorithm for solving a
nonsymmetric linear systems, Saad, Schultz, SIAM SSISC, 1986.

m A flexible inner-outer preconditioned GMRES algorithm, Saad, SIAM J.
Sci. Statist. Comput., 1993

m GMRESR: a family of nested GMRES methods, van der Vorst, Vuik, Num.
Lin. Alg. Appl., 1994

m BiCGStab: A fast and smoothly converging variant of Bi-CG for the
solution of non-symmetric linear systems, van der Vorst, SIAM SISC 1992

m Nested Krylov methods based on GCR, de Sturler, J. Comp. Appl. Math., '96
(GCRO)

m Truncation Strategies for optimal Krylov subspace methods, de Sturler,
SIAM SISC, 1999 (GCROT)

m  Recycling Krylov Subspaces for Sequences of Linear Systems, Parks, de
Sturler, Mackey, Johnson, Maiti, STAM SISC 28(5), 2006

m  Recycling Subspace Information for Diffuse Optical Tomography, Kilmer,
de Sturler, SIAM SISC 27(6), 2006

m Probing methods for saddle-point problems, Siefert, de Sturler, Elec. Trans.
Numer. Anal. (ETNA), 2006



" A
Good Reading

m Preconditioners for generalized saddle-point problems, PhD
Thesis, Siefert, UIUC 2006

m Improved Scaling for Quantum Monte Carlo on Insulators,
Ahuja, Clark, de Sturler, Ceperley, and Kim, SIAM SISC 33(4),
2011

m Recycling Krylov Subspaces and Preconditioners, PhD Thesis,
Ahuja, Virginia Tech, 2011

m Large-scale topology optimization using preconditioned
Krylov subspace methods with recycling, Wang, de Sturler,
Paulino, IJNME 69, 2007

s www.math.vt.edu/people/sturler/index.html
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