

Efficient Solution of Large Systems of Nonlinear PDEs in Science ENS Lyon, Lyon, France, October 7 - 9, 2013

- Inexact Newton Iteration
\square Basics
\square Approximating Jacobian-vector products
- Solver Aspects
\square Krylov subspace methods
\square Matrix-free implementations
- Matrix-free Preconditioning
\square Physics-based preconditioner
\square Approximating the Jacobian
\square Updating Preconditioners - Tuesday
- Useful Solver Variants
\square FGMRES
\square GMRES*, GCRO/GCROT

Inexact Newton

Consider $F(x)=0 \quad$ where $\quad F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
Typical Newton algorithm while $\|F(x)\|>\varepsilon$
(1) Solve $F^{\prime}\left(x_{n}\right) s=-F\left(x_{n}\right)$
(2) $x_{n+1}=x_{n}+\lambda s \quad$ (with λ chosen for sufficient decrease) end

Inexact Newton:
(1) $\left\|F\left(x_{n}\right)+F^{\prime}\left(x_{n}\right) s\right\| \leq \eta\left\|F\left(x_{n}\right)\right\|$

Use some suitable solver for computing s
Proceed with line search (2)

Inexact Newton Iteration

Inexact Newton: $\left\|F\left(x_{n}\right)+F^{\prime}\left(x_{n}\right) s\right\| \leq \eta\left\|F\left(x_{n}\right)\right\|$
Use Krylov subspace methods, like GMRES, CG, BiCGStab for approximately solving

$$
F^{\prime}\left(x_{n}\right) s=-F\left(x_{n}\right)
$$

The great advantage of such iterative methods is that we only need a matrix-vector product to solve the system, not the matrix.

Other methods with that property exist, sometimes (nonlinear) multigrid methods can be implemented in a similar fashion.

Approximating the Jacobian-vector Product

Solve $F^{\prime}\left(x_{n}\right) s=-F\left(x_{n}\right), \quad x_{0}=0 \rightarrow r_{0}=-F\left(x_{n}\right)$

Approximate matrix-vector product

$$
F^{\prime}\left(x_{n}\right) r_{0} \approx D_{\varepsilon}\left(x, r_{0}\right)=\frac{F\left(x_{n}+\varepsilon \sigma\left(x_{n}, r_{0}\right) r_{0}\right)-F\left(x_{n}\right)}{\varepsilon \sigma\left(x_{n}, r_{0}\right)},
$$

where $s\left(x_{n}, r_{0}\right)$ is a scaling factor chosen for accuracy

Sequence of such directional derivative approximations. Each approximates the Jacobian slightly differently, possibly destroying special structure.
Preference for robust methods.

Krylov Methods Crash Course

Consider $A x=b$. Initial guess $x_{0} \rightarrow r_{0}=b-A x_{0}$
In step $m: x_{m}=x_{0}+z_{m}$ where

$$
z_{m} \in K_{m}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, A^{2} r_{0}, \ldots, A^{m-1} r_{0}\right\}
$$

Krylov space is a space of polynomials in A times vector r_{0}
So, $z_{m}=p_{m-1}(A) r_{0} \quad$ and $\quad x_{m}=x_{0}+p_{m-1}(A) r_{0}$

$$
\begin{aligned}
& r_{m}=b-A x_{m}=b-A x_{0}-A p_{m-1}(A) r_{0}=r_{0}-A p_{m-1}(A) r_{0} \\
& r_{m}=q_{m}(A) r_{0}=\left(I-A p_{m-1}(A)\right) r_{0}
\end{aligned}
$$

Error: $e_{m}=A^{-1} b-x_{m}=A^{-1}\left(b-A x_{m}\right)=A^{-1} r_{m}$

$$
e_{m}=A^{-1} q_{m}(A) r_{0}=q_{m}(A) A^{-1} r_{0}=q_{m}(A) e_{0}
$$

Choices from Krylov Space

Given x_{0} and $r_{0}=b-A x_{0}$, pick $z_{m} \in K_{m}\left(A, r_{0}\right)$ and $x_{m}=x_{0}+z_{m}$
Several possibilities. Two particularly important ones are: Find z_{m} such that $\left\|r_{m}\right\|=\left\|r_{0}-A z_{m}\right\|$ is minimal Find z_{m} such that $\left\|e_{m}\right\|=\left\|\hat{x}-\left(x_{0}+z_{m}\right)\right\|$ is minimal

The second one is possible in practice for special norms, like the $\|x\|_{A}=(A x, x)^{1 / 2}$ if A Hermitian positive definite

Other possibilities exist, in particular non-optimal ones that allow very cheap iterations (BiCGStab)

Approximation by Matrix Polynomials

Let $A=V \Lambda V^{-1}$, let $\Lambda(A) \subset \Omega \subset \mathbb{C}$.
If $p_{m-1}(t) \approx \frac{1}{t}$ for all $t \in \Omega$, then $p_{m-1}(A)=V \operatorname{diag}\left(p_{m-1}\left(\lambda_{i}\right)\right) V^{-1} \approx A^{-1}$
Let $r_{0}=V \rho$. Then $p_{m-1}(A) r_{0}=\sum_{i} v_{i} p_{m-1}\left(\lambda_{i}\right) \rho_{i} \approx \sum_{i} v_{i} \frac{\rho_{i}}{\lambda_{i}}=A^{-1} r_{0}$
$r_{m}=q_{m}(A) r_{0}=\left(I-A p_{m-1}(A)\right) r_{0}=\sum_{i} v_{i}\left(1-\lambda_{i} p_{m-1}\left(\lambda_{i}\right)\right) \rho_{i} \approx 0$
If we can construct such polynomials for modest m, we have an efficient linear solver.

This is possible if the region Ω is nice - small region away from origin: clustered eigenvalues

If this is not the case, we improve by preconditioning: $P A x=P b \quad$ s.t. $P A$ has clustered eigenvalues and product with P is cheap.

Convergence Bounds

Residual at iteration m: $r_{m}=p_{m}(A) r_{0} \quad$ optimal (2-norm)
Eigenvalue bound $\left\|r_{m}\right\| \leq\|V\|\left\|V^{-1}\right\|\left\|r_{0}\right\| \min _{\substack{p \in \Pi_{m} \\ p(0)=1}} \max _{\lambda \in \Lambda(A)}|p(\lambda)|$
FOV bound $\left\|r_{m}\right\| \leq 2\left\|r_{0}\right\| \min _{\substack{p \in \Pi_{m}^{m} \\ p(0)=1}} \max _{\gamma \in W(A)}|p(\gamma)|$
Alternative FOV bound
$\left\|r_{m}\right\| \leq 2\left\|r_{0}\right\| \min _{\substack{p \in \Pi \prod_{m} \\ p(0)=1}}\left[\left\|P_{Q}\right\| \max _{\gamma_{1} \in W\left(Q^{*} A Q\right)} p\left(\gamma_{1}\right)+\left\|P_{Y}\right\| \max _{\gamma_{2} \in W\left(Y^{*} A Y\right)} p\left(\gamma_{2}\right)\right]$
Pseudospectrum bound $\left\|r_{m}\right\| \leq\left\|r_{0}\right\| \frac{\mathcal{L}\left(\mathcal{C}_{\varepsilon}\right)}{2 \pi \varepsilon} \min _{\substack{p \in \Pi_{m}, p(0)=1}} \max _{\gamma \in \mathcal{\mathcal { C } _ { \varepsilon }}}|p(\gamma)|$

Krylov Methods Crash Course

Consider $A x=b$, initial guess x_{0}, and residual $r_{0}=b-A x_{0}$
Compute optimal update z_{m} from

$$
\begin{aligned}
& K_{m}\left(A, r_{0}\right)=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{m-1} r_{0}\right\}: \quad \text { (for example) } \\
& \min \left\{\left\|b-A\left(x_{0}+z\right)\right\|_{2} \mid z \in K_{m}\left(A, r_{0}\right)\right\} \quad \Leftrightarrow \quad \min _{z \in K_{m}\left(A, r_{0}\right)}\left\|r_{0}-A z\right\|_{2}
\end{aligned}
$$

Let $K_{m}=\left[r_{0} A r_{0} A^{2} r_{0} \cdots A^{m-1} r_{0}\right]$, then $z=K_{m} \zeta$,
and we must solve the following least squares problem

$$
\begin{aligned}
& A K_{m} \zeta \approx r_{0} \quad \Leftrightarrow \quad\left[A r_{0} A^{2} r_{0} \cdots A^{m} r_{0}\right] \zeta \approx r_{0} \\
& x_{m}=x_{0}+z_{m} \quad \text { and } \quad r_{m}=r_{0}-A z_{m}
\end{aligned}
$$

Do this accurately and efficiently every iteration for increasing m. One such method: GMRES - Saad/Schulz'86

Minimum Residual Solutions: GMRES

Generate iteration-wise an orthogonal basis for $K_{m+1}\left(A, r_{0}\right)$. The Arnoldi algorithm (iteration): Let $v_{1}=r_{0} /\left\|r_{0}\right\|_{2}$;
for $k=1 \ldots m$,

$$
\tilde{v}_{k+1}=A v_{k} ;
$$

$$
\text { for } j=1 \ldots k \text {, }
$$

$$
h_{j, k}=v_{j}^{*} \tilde{v}_{k+1} ; \tilde{v}_{k+1}=\tilde{v}_{k+1}-h_{j, k} v_{j} ;
$$

end

$$
h_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2} ; v_{k+1}=\tilde{v}_{k+1} / h_{k+1, k} ;
$$

end
Arnoldi recurrence: $A V_{m}=V_{m+1} \underline{H}_{m}$

$$
\begin{aligned}
& V_{m+1}^{*} V_{m+1}=I_{m+1} \text { (orthogonal) }, \\
& \underline{H}_{m}=V_{m+1}^{*} A V_{m} \text { (upper Hessenberg) }
\end{aligned}
$$

Minimum Residual Solutions: GMRES

Using $A V_{m}=V_{m+1} \underline{H}_{m}$, we solve $\min \left\{\left\|r_{0}-A z\right\|_{2} \mid z \in K_{m}\left(A, r_{0}\right)\right\}$ as follows. Let $z=V_{m} \zeta$, and minimize $\left\|r_{0}-A V_{m} \zeta\right\|_{2}$ over all m-vectors ζ.
Note that this is an $n \times m$ least squares problem (as before).
Now substitute $r_{0}=V_{m+1} \eta_{1}\left\|r_{0}\right\|_{2}$ and $A V_{m}=V_{m+1} \underline{H}_{m}$. This gives
$\left\|V_{m+1} \eta_{1}\right\| r_{0}\left\|_{2}-V_{m+1} \underline{H}_{m} \zeta\right\|_{2}=\left\|V_{m+1}\left(\eta_{1}\left\|r_{0}\right\|_{2}-\underline{H}_{m} \zeta\right)\right\|_{2}=\left\|\eta_{1}\right\| r_{0}\left\|_{2}-\underline{H}_{m} \zeta\right\|_{2}$
The latter is a small $(m+1) \times m$ least squares problem we can solve by standard dense linear algebra techniques (e.g. using LAPACK)

We can exploit the structure of \underline{H}_{m} and the least squares problem to 1. do this efficiently,
2. compute the residual norm without computing the residual

Minimum Residual Solutions: GMRES

GMRES: $A x=b$
Choose x_{0}, tolerance ε; set $r_{0}=b-A x_{0} ; v_{1}=r_{0} /\left\|r_{0}\right\|_{2}, k=0$. while $\left\|r_{k}\right\|_{2} \geq \varepsilon$ do

$$
\begin{aligned}
& k=k+1 \\
& \tilde{v}_{k+1}=A v_{k} ; \\
& \text { for } j=1 \ldots k \\
& \quad h_{j, k}=v_{j}^{*} \tilde{v}_{k+1} ; \tilde{v}_{k+1}=\tilde{v}_{k+1}-h_{j, k} v_{j} ;
\end{aligned}
$$

end
$h_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2} ; v_{k+1}=\tilde{v}_{k+1} / h_{k+1, k}$;
Solve LS $\min _{\zeta}\left\|\eta_{1}\right\|_{r_{0}}\left\|_{2}-\underline{H}_{k} \zeta\right\|_{2} \quad\left(=\left\|r_{k}\right\|_{2}\right)$ by construction
(actually we update the solution rather than solve from scratch - see later) end
$x_{k}=x_{0}+V_{k} \zeta_{k} ;$
$r_{k}=r_{0}-V_{k+1} \underline{H}_{k} \zeta_{k}=V_{k+1}\left(\eta_{1}\left\|r_{0}\right\|-\underline{H}_{k} \zeta_{k}\right)$ or simply $r_{k}=b-A x_{k}$

Conjugate Gradient Method

Hermitian matrices: Error minimization in the A-norm

We are solving $A x=b$ with initial guess $x_{0} \rightarrow r_{0}=b-A x_{0}$ and $\hat{\boldsymbol{x}}$ is the solution to $\boldsymbol{A x}=\boldsymbol{b}$.
The error at iteration i is $\varepsilon_{i}=\hat{x}-\left(x_{0}+z_{i}\right)$, where $z_{i} \in K^{i}\left(A, r_{0}\right)$ is the i th update to the initial guess.

Theorem:
Let A be Hermitian, then the vector $z_{i} \in K^{i}\left(A, r_{0}\right)$ satisfies $z_{i}=\arg \min \left\{\left\|\hat{x}-\left(x_{0}+z\right)\right\|_{A}: z \in K^{i}\left(A, r_{0}\right)\right\}$ iff $r_{i} \equiv r_{0}-A z_{i}$ satisfies $r_{i} \perp \boldsymbol{K}^{i}\left(A, r_{0}\right)$.

The most important algorithm of this class is the Conjugate Gradient Algorithm.

Conjugate Gradients method

Solve $A x=b$, Choose $x_{0} \rightarrow r_{0}=b-A x_{0}$
$p_{1}=r_{0} ; i=0$
While $\left\|r_{0}\right\|>\varepsilon$ do

$$
\begin{aligned}
& i=i+1 \\
& \alpha_{i}=\left\langle r_{i-1}, r_{i-1}\right\rangle /\left\langle A p_{i-1}, p_{i-1}\right\rangle \\
& x_{i}=x_{i-1}+\alpha_{i} p_{i} ; r_{i}=r_{i-1}-\alpha_{i} A p_{i} \\
& \beta_{i}=\left\langle r_{i}, r_{i}\right\rangle /\left\langle r_{i-1}, r_{i-1}\right\rangle \\
& p_{i}=r_{i}-\beta_{i} p_{i-1}
\end{aligned}
$$

End

Preconditioning needs to maintain symmetry:

- Precondition on both sides: $\tilde{L}^{-1} A \tilde{L}^{-T}$
- Maintain symmetry wrt to inner products including preconditioner

Preconditioned CG

- Preconditioner may be based on some linear operator, say, fast solve for differential operator (Laplacian).
- Hard to 'split' such an operation.
- Change of inner product can help.

Preconditioned matrix $\tilde{L}^{-T} \tilde{L}^{-1} A$, inner product $\langle x, y\rangle_{\tilde{L} \tilde{L}^{T}}=y^{T} \tilde{L} \tilde{L}^{T} x$

$$
\begin{aligned}
\left\langle\tilde{L}^{-T} \tilde{L}^{-1} A x, y\right\rangle_{\tilde{L} \tilde{L}^{T}} & =y^{T} \tilde{L} \tilde{L}^{T} \tilde{L}^{-T} \tilde{L}^{-1} A x=y^{T} A x \\
& =y^{T} A^{T} \tilde{L}^{-T} \tilde{L}^{-1} \tilde{L} \tilde{L}^{T} x=\left\langle x, \tilde{L}^{-T} \tilde{L}^{-1} A y\right\rangle_{\tilde{L} \tilde{L}^{T}}
\end{aligned}
$$

Using $\tilde{L} \tilde{L}^{T}$ inner product allows to do one-sided preconditioning in CG

CG is Sensitive

CG for problem with slight nonsymmetry

BiCGStab

Choose $x_{0} \rightarrow r_{0}=b-A x_{0} ; i=0 ; \omega_{0}=1$
Choose \tilde{r}, typically best random but also $\tilde{r}_{0}=r_{0}$
while $\left\|r_{i}\right\|>\varepsilon \& \omega_{i} \neq 0$, do

$$
\begin{aligned}
& \rho_{i-1}=\tilde{r}^{T} r_{i-1} ; \text { if } \rho_{i-1}=0 \text { stop (method fails) } \\
& \text { if } i=1, p_{i}=r_{i-1} \\
& \text { else } \beta_{i-1}=\left(\rho_{i-1} / \rho_{i-2}\right)\left(\alpha_{i-1} / \omega_{i-1}\right) ; p_{i}=r_{i-1}+\beta_{i-1}\left(p_{i-1}-\omega_{i-1} v_{i-1}\right) \\
& v_{i}=A p_{i} \\
& \alpha_{i}=\rho_{i-i} / \tilde{r}^{T} v_{i} ; s=r_{i-1}-\alpha_{i} v_{i} \\
& \text { if }\|s\|<\varepsilon \text { break; } x_{i}=x_{i-1}+\alpha_{i} p_{i} \text { and stop } \\
& t=A s ; \omega_{i}=t^{T} s / t^{T} t \\
& x_{i}=x_{i-1}+\alpha_{i} p_{i}=\omega_{i} s ; r_{i}=s-\omega_{i} t
\end{aligned}
$$

end

BiCGStab

- BiCGStab is not based on any optimality property
- In general, convergence is often fairly fast (not much worse than GMRES)
- Method may behave erratically and breakdown
- Iterations, cost per dimension of Krylov space or per matvec , are cheap
- Method does not need symmetry or any other property

Preconditioning

- $P A x=P b$ or $A P \tilde{x}=b \quad$ or $\quad P_{1} A P_{2} \tilde{x}=P_{1} b$
- Generating the polynomials (basis) requires only a matrix-vector product (matvec)
- Matvec can be done approximately by function evaluation
- Preconditioning is complicated if we do not have the matrix available
\square Precondition inside the function evaluation (limited possibilities)
\square Approximate the linear operator and use approximation to compute a preconditioner
- Many ways to approximate matrix using only matvecs (function evaluations)
- May be expensive but we can update once we have it

Preconditioning

Solve $F^{\prime}\left(x_{n}\right) s=-F\left(x_{n}\right)$:
Right preconditioning $F^{\prime}\left(x_{n}\right) M \tilde{s}=-F\left(x_{n}\right) \quad$ and $s=M \tilde{s}$
Left preconditioning $M F^{\prime}\left(x_{n}\right) s=-M F\left(x_{n}\right)$
Left preconditioner: $M F^{\prime}\left(x_{n}\right) w \approx(1 / \varepsilon) M\left[F\left(x_{n}+\varepsilon w\right)-F\left(x_{n}\right)\right]$
Right preconditioner: $F^{\prime}\left(x_{n}\right) M w \approx(1 / \varepsilon)\left[F\left(x_{n}+\varepsilon M w\right)-F\left(x_{n}\right)\right]$

Often include the preconditioning in nonlinear system:

$$
\begin{array}{lrr}
G(x)=F(M x)=0 & \text { or } & G(x)=M F(x) \\
F^{\prime}(M x) M s=-F(M x) & & G^{\prime}(x)=M F^{\prime}(x)
\end{array}
$$

Drawback is that preconditioner fixed over nonlinear iterations

Further discussion

- GMRES robust but expensive unless convergence fast-O(nm^{2})
- Can restart but often bad for convergence
- This has prompted methods with smarter 'restart'
\square GMRESDR (Morgan), GCROT (dS), GMRESR/* (vdVorst/Vuik)
- Implicit preconditioning may lead to varying preconditioner per iteration - FGMRES (Saad),
- GMRESR/* (vdVorst/Vuik'94), GCRO(T) (dS'95 '99) allow varying preconditioner in so-called inner iterations
- Basic idea underlying these variants is that some of the algebraic relations (optimality over subspace) in Krylov methods are preserved, whereas others (which search space) are relaxed

Probing

We can think of the previously generated search spaces and their image under the matrix (Jacobian) as building a preconditioner (using only matvecs).

This idea can be exploited more generally. Use matvecs with selected vectors to approximate or reconstruct the matrix and then build a preconditioner:

Probing or sparse Jacobian/Hessian approximation
How to build a matrix approximation using only matvecs?

- Know or compute or guess structure of the matrix and define an (approximate) nonzero pattern
- Use discrete optimization to compute the 'probing' vectors and minimize (approximately) the number of vectors.
- Compute approximate inverse of approximate Jacobian

Probing

- Idea: Multiply with carefully chosen vectors of 1's and 0's (Curtis, Powell \& Reid 1974).
- Example:

$$
\left[\begin{array}{ccccc}
a_{1} & b_{2} & & & \\
c_{1} & a_{2} & b_{3} & & \\
& c_{2} & a_{3} & b_{4} & \\
& & c_{3} & a_{4} & b_{5} \\
& & & c_{4} & a_{5}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
a_{1} & b_{2} & 0 \\
c_{1} & a_{2} & b_{3} \\
b_{4} & c_{2} & a_{3} \\
a_{4} & b_{5} & c_{3} \\
c_{4} & a_{5} & 0
\end{array}\right]
$$

Uses vectors $e_{1}+e_{4}, e_{2}+e_{5}$ and e_{3}.

Probing

- This is a graph coloring problem (Coleman \& Moré 1983).
- Adjacency graph of A : Has (i, j) edge if $A_{i, j}$ is non-zero.
- Problem: Distance-2 coloring of adjacency graph of matrix (McCormick 1983).

Probing

- For non-banded matrices, we can use the same technique (Coleman \& Moré 1983; Cullum \& Tuma 2004).

- Survey Article: Gebremedhin, Manne \& Pothen, 2005.

Probing methods for saddle-point problems, Siefert \& de Sturler, Elec. Trans. Numer. Anal. (ETNA), 2006

Probing

$\tilde{A}=$ Structured Probing $\left(A \in \mathbb{R}^{n \times n}\right)$

1. Choose a sparsity pattern H for the output matrix \tilde{A}.
2. Color adjacency graph of H and generate vector of colors.
3. Generate probing vectors x_{1}, \ldots, x_{p}, one for each of p colors.
4. For each probing vector, x_{i}, multiply $w_{i}=A x_{i}$.
5. Build \tilde{A} using sparsity pattern H and vectors w_{1}, \ldots, w_{p}.

Note: If H and A have same sparsity pattern, $\tilde{A}=A$.
Note: Number of colors (p) small, regardless of problem size
$\Rightarrow S P$ is cheap!

FGMRES

FGMRES maintains an Arnoldi-like recurrence
$A Z_{m}=V_{m+1} \underline{H}_{m} \quad$ where $\quad V_{m+1}^{T} V_{m+1}=I_{m}$ and $Z_{m}=\left[P_{1} v_{1} \ldots P_{m} v_{m}\right]$
Update $z_{m}=Z_{m} \zeta$ is not from $K_{m}\left(A, r_{0}\right)$ or $K_{m}\left(P A, P r_{0}\right)$

Algebraic structure and orthonormal columns of V_{m+1} allow similar minimization as for GMRES

Varying preconditioner may be useful

- when some function is applied to multiply vector by preconditioner and this leads to variation in exact operator
- When iteration is used to approximate a linear operator (for example multigrid iteration for fast Poisson solver)

FGMRES

(Saad'93)

Solve $A x=b \quad$ allow variable preconditioner Choose x_{0}, tolerance ε; set $r_{0}=b-A x_{0} ; v_{1}=r_{0} /\left\|r_{0}\right\|_{2}, k=0$. while $\left\|r_{k}\right\|_{2} \geq \varepsilon$ do

$$
\begin{aligned}
& k=k+1 \\
& z_{k}=P_{k} v_{k} ; \quad \tilde{v}_{k+1}=A z_{k} \\
& \text { for } j=1 \ldots k,
\end{aligned}
$$

$$
h_{j, k}=v_{j}^{*} \tilde{v}_{k+1} ; \tilde{v}_{k+1}=\tilde{v}_{k+1}-h_{j, k} v_{j} ;
$$

end

$$
h_{k+1, k}=\left\|\tilde{v}_{k+1}\right\|_{2} ; v_{k+1}=\tilde{v}_{k+1} / h_{k+1, k} ; \quad\left\{A Z_{k}=V_{k+1} \underline{H}_{k}\right\}
$$

Pick update $z_{k}=Z_{k} \zeta_{k}$
Solve LS $\min _{\zeta}\left\|V_{k+1} \eta_{1}\right\| r_{0}\left\|-A Z_{k} \zeta\right\|=\min _{\zeta}\left\|\eta_{1}\right\| r_{0}\left\|_{2}-\underline{H}_{k} \zeta\right\|_{2}\left(=\left\|r_{k}\right\|_{2}\right)$ end

$$
\begin{aligned}
& x_{k}=x_{0}+Z_{k} \zeta_{k} ; \\
& r_{k}=r_{0}-V_{k+1} \underline{H}_{k} \zeta_{k}=V_{k+1}\left(\eta_{1}\left\|r_{0}\right\|-\underline{H}_{k} \zeta_{k}\right) \text { or simply } r_{k}=b-A x_{k}
\end{aligned}
$$

Other Variants

Similar ideas underly other solver variants. Consider GCR method (Eisenstat, Elman, Schultz'83) - algebraically equivalent to GMRES but more expensive, possible breakdown.

GCR: $A x=b$
Choose x_{0} (e.g. $x_{0}=0$) and tolerance ε; set $r_{0}=b-A x_{0} ; i=0$ while $\left\|r_{i}\right\|_{2} \geq \varepsilon$ do

$$
\begin{aligned}
& i=i+1 ; u_{i}=r_{i-1} ; c_{i}=A u_{i} \\
& \text { for } j=1, \ldots, i-1 \text { do }
\end{aligned}
$$

$$
u_{i}=u_{i}-u_{j} c_{j}^{*} c_{i} ; c_{i}=c_{i}-c_{j} c_{j}^{*} c_{i}
$$

end

$$
\begin{aligned}
& u_{i}=u_{i} /\left\|c_{i}\right\|_{2} ; c_{i}=c_{i} /\left\|c_{i}\right\|_{2} \\
& x_{i}=x_{i-1}+u_{i} c_{i}^{*} r_{i-1} ; r_{i}=r_{i-1}-c_{i} c_{i}^{*} r_{i-1}
\end{aligned}
$$

end

Solver Variants

GCR builds following algebraic relations:
Range $\left(U_{m}\right)=K_{m}\left(A, r_{0}\right), A U_{m}=C_{m}, \quad$ and $\quad C_{m}^{T} C_{m}=I_{m}$
At each step the method computes minimum 2-norm residual by setting $r_{m} \perp C_{m}$.

$$
r_{m}=r_{0}-C_{m} C_{m}^{T} r_{0} \quad \text { and } \quad x_{m}=x_{0}+U_{m} C_{m}^{T} r_{0}=x_{0}+A^{-1} C_{m} C_{m}^{T} r_{0}
$$

Krylov space as search space arises because $u_{k}=r_{k}$, but this can be generalized. Algebraically, any vector is okay (though probably not equally successful).

So, replace residual in $u_{k}=r_{k}$ by any good approximation to the error (the error would give convergence in one step).

Solver Variants

In GMRES* $u_{k}=p_{m}(A) r_{0}$ or $u_{k}=p_{m}(A P) r_{0}$ computed by m steps of an inner Krylov method (if GMRES then called GMRESR)

In GCRO $u_{k}=A^{-1} p_{m}\left(\left(I-C_{k} C_{k}^{T}\right) A\right) r_{0}$ or

$$
u_{k}=A^{-1} p_{m}\left(\left(I-C_{k} C_{k}^{T}\right) A M\right) r_{0}
$$

again computed by some inner Krylov method, while maintaining orthogonality to outer search space (optimality) If GMRES used inside then optimality over entire search space Range $\left(U_{k}\right)+$ Range $\left(V_{m}\right)$

But search space no longer Krylov space - in return significant flexibility. This formed the basis for methods that recycle Krylov subspaces for sequences of slowly changing systems ($2^{\text {nd }}$ talk).

GCROT: Selective orthogonality

- Restarted GMRES versus GCROT, which maintains orthogonality against sequence of selected subspaces.
- Time-wise the advantage of GCROT is even larger as working with a smaller subspace is much faster.

Convection-diffusion problem with strong convection

Good reading

- GMRES: a generalized minimal residual algorithm for solving a nonsymmetric linear systems, Saad, Schultz, SIAM SSISC, 1986.
- A flexible inner-outer preconditioned GMRES algorithm, Saad, SIAM J. Sci. Statist. Comput., 1993
- GMRESR: a family of nested GMRES methods, van der Vorst, Vuik, Num. Lin. Alg. Appl., 1994
- BiCGStab: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, van der Vorst, SIAM SISC 1992
- Nested Krylov methods based on GCR, de Sturler, J. Comp. Appl. Math., '96 (GCRO)
- Truncation Strategies for optimal Krylov subspace methods, de Sturler, SIAM SISC, 1999 (GCROT)
- Recycling Krylov Subspaces for Sequences of Linear Systems, Parks, de Sturler, Mackey, Johnson, Maiti, SIAM SISC 28(5), 2006
- Recycling Subspace Information for Diffuse Optical Tomography, Kilmer, de Sturler, SIAM SISC 27(6), 2006
- Probing methods for saddle-point problems, Siefert, de Sturler, Elec. Trans. Numer. Anal. (ETNA), 2006

Good Reading

- Preconditioners for generalized saddle-point problems, PhD Thesis, Siefert, UIUC 2006
- Improved Scaling for Quantum Monte Carlo on Insulators, Ahuja, Clark, de Sturler, Ceperley, and Kim, SIAM SISC 33(4), 2011
- Recycling Krylov Subspaces and Preconditioners, PhD Thesis, Ahuja, Virginia Tech, 2011
- Large-scale topology optimization using preconditioned Krylov subspace methods with recycling, Wang, de Sturler, Paulino, IJNME 69, 2007
■ www.math.vt.edu/people/sturler/index.html

