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 Useful Solver Variants 
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 GMRES*, GCRO/GCROT 

 



Inexact Newton 

Consider   0F x   where  : n nF    

Typical Newton algorithm 

while  F x   

(1) Solve    n n
F x s F x    

(2) 
1n n

x x s     (with   chosen for sufficient decrease) 

end  
 
Inexact Newton: 

(1)      n n n
F x F x s F x   

Use some suitable solver for computing s  
Proceed with line search (2) 



Inexact Newton Iteration 

Inexact Newton:      n n n
F x F x s F x   

 
Use Krylov subspace methods, like GMRES, CG, BiCGStab for 
approximately solving 
 
    n n

F x s F x    

 
The great advantage of such iterative methods is that we only 
need a matrix-vector product to solve the system, not the 
matrix. 
 
Other methods with that property exist, sometimes (nonlinear) 
multigrid methods can be implemented in a similar fashion. 



Approximating the Jacobian-vector Product 

Solve    n n
F x s F x   ,    0 0

0
n

x r F x     

 
Approximate matrix-vector product 
 

    
    
 

0 0

0 0

0

,
,

,

n n n

n

n

F x x r r F x
F x r D x r

x r





 
    ,  

 
where  0

,
n

s x r  is a scaling factor chosen for accuracy 

 
Sequence of such directional derivative approximations.  
Each approximates the Jacobian slightly differently, possibly 
destroying special structure. 
Preference for robust methods. 



Krylov Methods Crash Course 
Consider Ax b . Initial guess 

0 0 0
x r b Ax    

In step m : 
0m m

x x z    where 
 

    2 1
0 0 0 0 0

, span , , , , m
m m

z K A r r Ar A r A r     

 
Krylov space is a space of polynomials in A times vector 

0
r  

 
So,  1 0m m

z p A r     and     0 1 0m m
x x p A r   

    0 1 0 0 1 0m m m m
r b Ax b Ax Ap A r r Ap A r         

     0 1 0m m m
r q A r I Ap A r    

 
Error:  1 1 1

m m m m
e A b x A b Ax A r        

       1 1
0 0 0m m m m

e A q A r q A A r q A e      



Choices from Krylov Space 

Given 
0

x  and 
0 0

r b Ax  , pick  0
,

m m
z K A r  and 

0m m
x x z   

 
Several possibilities. Two particularly important ones are: 
Find 

m
z  such that 

0m m
r r Az ‖ ‖ ‖ ‖ is minimal 

Find 
m

z  such that 
0

ˆ ( )
m m

e x x z  ‖ ‖ ‖ ‖ is minimal 

 
 
The second one is possible in practice for special norms, like the 

 1/2,
A

x Ax x  if A Hermitian positive definite 

 
 
Other possibilities exist, in particular non-optimal ones that 
allow very cheap iterations (BiCGStab) 



Approximation by Matrix Polynomials 
Let 1A V V  , let  A   . 

If  1

1
m

p t
t

  for all t  , then      1 1
1 1

diag
m m i

p A V p V A  
    

Let  
0

r V  .  Then     1
1 0 1 0

i
m i m i i ii i

i

p A r v p v A r


 



 

     

       0 1 0 1
1 0

m m m i i m i ii
r q A r I Ap A r v p          

 
If we can construct such polynomials for modest m , we have an 
efficient  linear solver.  
 
This is possible if the region   is nice – small region away from origin: 
clustered eigenvalues 
 
If this is not the case, we improve by preconditioning:  PAx Pb    s.t. 
PA has clustered eigenvalues and product with P  is cheap. 



Convergence Bounds 

Residual at iteration m:   0m m
r p A r   optimal (2-norm) 

 

Eigenvalue bound 
 

   1
0 ,

0 1

min max
mm p A

p

r V V r p  


 


  

 

FOV bound 
 

   0
0 1

2 min max
mm p W A

p

r r p 
 



  

 
Alternative FOV bound 

         * *
1 2

0 1 2
0 1

2 min max max
mm p Q YW Q AQ W Y AY

p

r r P p P p  
   



 
  
  

 

 

Pseudospectrum bound 
 

 
 0 ,

0 1

min max
2 mm p

p

r r p



  

  


 

 
 



Krylov Methods Crash Course 
Consider Ax b , initial guess 0x , and residual 0 0r b Ax    

Compute optimal update 
m

z  from  

  1
0 0 0 0

, span{ , , , }m
m

K A r r Ar A r  :  (for example) 

       0
0 0 0 22 ,

min | , min
m

m z K A r
b A x z z K A r r Az


      

 

Let 2 1
0 0 0 0

m
mK r Ar A r A r     , then mz K  , 

and we must solve the following least squares problem 

 2
0 0 0 0 0

m
mAK r Ar A r A r r        

 
0m m

x x z   and 
0m m

r r Az   

Do this accurately and efficiently every iteration for increasing m . 
One such method: GMRES – Saad/Schulz'86 



Minimum Residual Solutions: GMRES 

Generate iteration-wise an orthogonal basis for 
1 0
( , )

m
K A r . 

The Arnoldi algorithm (iteration):  Let 
1 0 0 2

v r r ; 

for 1k m  , 
 

1k k
v Av  ; 

 for 1j k  , 
  *

, 1j k j k
h v v   ; 

1 1 ,k k j k j
v v h v    ; 

 end 
 

1, 1 2k k k
h v   ; 

1 1 1,k k k k
v v h    ; 

end 
 
Arnoldi recurrence: 

1 mm m
AV V H  

 *
1 1 1m m m

V V I    (orthogonal),  

 *
1m m m

H V AV  (upper Hessenberg) 



Minimum Residual Solutions: GMRES 

Using 
1 mm m

AV V H , we solve   0 02
min | ,

m
r Az z K A r   as follows. 

Let 
m

z V  , and minimize 
0 2m

r AV   over all m-vectors  . 

Note that this is an n m  least squares problem (as before). 
 
Now substitute 

0 1 1 0 2m
r V r  and 

1 mm m
AV V H . This gives 

 

 1 1 0 1 1 1 0 1 02 2 22 22
m m mm m m

V r V H V r H r H             

 
The latter is a small  1m m   least squares problem we can solve by standard 

dense linear algebra techniques (e.g. using LAPACK) 
 
We can exploit the structure of mH  and the least squares problem to  
1.  do this efficiently, 
2.  compute the residual norm without computing the residual 



Minimum Residual Solutions: GMRES 
GMRES: Ax b  
Choose 

0
x , tolerance  ; set 

0 0
r b Ax  ; 

1 0 0 2
v r r , 0k  . 

while 
2k

r ‖ ‖  do 

 1k k        
 

1k k
v Av  ; 

 for 1j k  , 
  *

, 1j k j k
h v v   ; 

1 1 ,k k j k j
v v h v    ; 

 end 
 

1, 1 2k k k
h v   ; 

1 1 1,k k k k
v v h    ; 

 Solve LS 
1 0 2 2

min kr H      
2k

r  by construction  

 (actually we update the solution rather than solve from scratch – see later) 
end 

0k k k
x x V   ; 

 0 1 1 1 0k kk k k k k
r r V H V r H        or simply 

k k
r b Ax   



Conjugate Gradient Method 



Conjugate Gradients method 

Solve Ax b , Choose 
0 0 0

x r b Ax    

1 0
; 0p r i   

While 
0

r   do 

 1;i i   

 
1 1 1 1
, ,

i i i i i
r r Ap p      

 
1i i i i

x x p  ; 
1i i i i

r r Ap   

 
1 1

, ,
i i i i i

r r r r    

 
1i i i i

p r p    

End 
 
Preconditioning needs to maintain symmetry: 

• Precondition on both sides: 1 TL AL 
   

• Maintain symmetry wrt to inner products including preconditioner 



Preconditioned CG 
• Preconditioner may be based on some linear operator, say, 

fast solve for differential operator (Laplacian). 
• Hard to ‘split’ such an operation. 
• Change of inner product can help. 

 

Preconditioned matrix 1TL L A 
  ,  inner product ,

T

T T

LL
x y y LL x



  

1 1

1 1

,

,
T

T

T T T T T

LL
T T T T T

LL

L L Ax y y LL L L Ax y Ax

y A L L LL x x L L Ay

   

   

 

 




    

    

 

 

Using TLL  inner product allows to do one-sided preconditioning 
in CG 
 



CG is Sensitive 

CG for problem with slight nonsymmetry 

10 2
log

k
r

iterations 



BiCGStab 

Choose 
0 0 0

x r b Ax   ; 0i  ; 
0

1   

Choose r, typically best random but also 
0 0

r r   

while & 0
i i

r    , do 

 
1 1

T
i i

r r    ; if 
1

0
i
    stop (method fails) 

 if 1i  , 
1i i

p r  

 else   1 1 2 1 1i i i i i
         ;   1 1 1 1 1i i i i i i

p r p v         

 
i i

v Ap  

 T
i i i i

r v    ; 
1i i i

s r v   

 if s   break; 
1i i i i

x x p   and stop 

 t As ; T T
i

t s t t   

 
1i i i i i

x x p s    ;  
i i

r s t   

end 



BiCGStab 

 BiCGStab is not based on any optimality property 
 In general, convergence is often fairly fast (not 

much worse than GMRES) 
 Method may behave erratically and breakdown 
 Iterations, cost per dimension of Krylov space or per 

matvec , are cheap 
 

 Method does not need symmetry or any other 
property 



Preconditioning 

   
 Generating the polynomials (basis) requires only a 

matrix-vector product (matvec) 
 Matvec can be done approximately by function 

evaluation 
 Preconditioning is complicated if we do not have the 

matrix available 
 Precondition inside the function evaluation (limited 

possibilities) 
 Approximate the linear operator and use approximation to 

compute a preconditioner 

 Many ways to approximate matrix using only 
matvecs (function evaluations) 

 May be expensive but we can update once we have it  

             r o   o r  
1 2 1

PAx Pb APx b PAP x Pb   



Preconditioning 

Solve    n n
F x s F x   :  

Right preconditioning     n n
F x Ms F x    and s Ms  

Left preconditioning     n n
MF x s MF x    

  

Left preconditioner:        1 /
n n n

MF x w M F x w F x         

Right preconditioner:        1 /
n n n

F x Mw F x Mw F x         

 
Often include the preconditioning in nonlinear system: 
 

    0G x F Mx     or      G x MF x  

   F Mx Ms F Mx          G x MF x   

Drawback is that preconditioner fixed over nonlinear iterations 



Further discussion 
 GMRES robust but expensive unless convergence 

fast – 𝑂 𝑛𝑚2  
 Can restart but often bad for convergence 
 This has prompted methods with smarter ‘restart’ 

 GMRESDR (Morgan), GCROT (dS), GMRESR/* 
(vdVorst/Vuik) 

 Implicit preconditioning may lead to varying 
preconditioner per iteration – FGMRES (Saad), 

 GMRESR/* (vdVorst/Vuik'94), GCRO(T) (dS'95 '99) 
allow varying preconditioner in so-called inner 
iterations 

 Basic idea underlying these variants is that some of 
the algebraic relations (optimality over subspace) in 
Krylov methods are preserved, whereas others 
(which search space) are relaxed  



Probing  
We can think of the previously generated search spaces and 
their image under the matrix (Jacobian) as building a 
preconditioner (using only matvecs). 
 
This idea can be exploited more generally. Use matvecs with 
selected vectors to approximate or reconstruct the matrix and 
then build a preconditioner:  
 
Probing or sparse Jacobian/Hessian approximation 
 
How to build a matrix approximation using only matvecs? 
• Know or compute or guess structure of the matrix and define 

an (approximate) nonzero pattern 
• Use discrete optimization to compute the ‘probing’ vectors 

and minimize (approximately) the number of vectors. 
• Compute approximate inverse of approximate Jacobian 

 



Probing 



Probing 



Probing 

Probing methods for saddle-point problems, Siefert & de Sturler, 
Elec. Trans. Numer. Anal. (ETNA), 2006  



Probing 



FGMRES 
FGMRES maintains an Arnoldi-like recurrence 
 

1 mm m
AZ V H  where  

1 1
T
m m m

V V I    and 
1 1m m m

Z Pv P v      

Update 
m m

z Z   is not from  0
,

m
K A r  or  0

,
m

K PA Pr  

 
Algebraic structure and orthonormal columns of 

1m
V 

 allow 

similar minimization as for GMRES 
 
Varying preconditioner may be useful  
• when some function is applied to multiply vector by 

preconditioner and this leads to variation in exact operator 
• When iteration is used to approximate a linear operator (for 

example multigrid iteration for fast Poisson solver) 



FGMRES     (Saad’93) 

Solve Ax b   allow variable preconditioner 
Choose 

0
x , tolerance  ; set 

0 0
r b Ax  ; 

1 0 0 2
v r r , 0k  . 

while 
2k

r ‖ ‖  do 

 1k k   
 

k k k
z P v ; 

1k k
v Az   

 for 1j k  , 
  *

, 1j k j k
h v v   ; 

1 1 ,k k j k j
v v h v    ;   

 end 
 

1, 1 2k k k
h v   ; 

1 1 1,k k k k
v v h    ;   {

1 kk k
AZ V H } 

 Pick update 
k k k

z Z   

 Solve LS 
1 1 0 1 0 2 2

min min kk k
V r AZ r H           

2k
r   

end 

0k k k
x x Z   ; 

 0 1 1 1 0k kk k k k k
r r V H V r H        or simply 

k k
r b Ax   



Other Variants 
Similar ideas underly other solver variants. Consider GCR 
method (Eisenstat, Elman, Schultz’83) – algebraically equivalent 
to GMRES but more expensive, possible breakdown. 
 
GCR: Ax b  
Choose 

0
x  (e.g. 

0
0x  ) and tolerance  ; set 

0 0
r b Ax  ; 0i   

while 
2i

r ‖ ‖  do 

 1i i  ; 
1
;

i i i i
u r c Au    

 for 1, , 1j i   do 
  *

i i j j i
u u u c c  ; *

i i j j i
c c c c c      

 end 
 

2 2
/ ; /

i i i i i i
u u c c c c ‖ ‖ ‖ ‖   

 *
1 1i i i i i

x x u c r   ; *
1 1i i i i i

r r c c r       

end 



Solver Variants 

GCR builds following algebraic relations: 
 

   0
Range ,

m m
U K A r , 

m m
AU C ,  and  T

m m m
C C I  

 
At each step the method computes minimum 2-norm residual by 
setting  

m m
r C . 

 
 

0 0
T

m m m
r r C C r      and    1

0 0 0 0
T T

m m m m m
x x U C r x A C C r     

 
Krylov space as search space arises because 

k k
u r , but this can 

be generalized. Algebraically, any vector is okay (though 
probably not equally successful).  
 
So, replace residual in 

k k
u r  by any good approximation to the 

error (the error would give convergence in one step).    
 



Solver Variants 

In GMRES*    0k m
u p A r   or    0k m

u p AP r    computed by 𝑚 

steps of an inner Krylov method (if GMRES then called 
GMRESR) 
 
In GCRO    1

0
T

k m k k
u A p I C C A r   or  

     1
0

T
k m k k

u A p I C C AM r    

again computed by some inner Krylov method, while 
maintaining orthogonality to outer search space (optimality) 
If GMRES used inside then optimality over entire search space 

   Range Range
k m

U V  

  
But search space no longer Krylov space – in return significant 
flexibility. This formed the basis for methods that recycle Krylov 
subspaces for sequences of slowly changing systems (2nd talk). 



GCROT: Selective orthogonality 

1. gcrot(30,20)
2. gcrot(20,13)

gmres(50)

gmres(150)

2

1

4

2

0

-2

-4

-6

-8
0 100 200 300 400 500 600 700

nr. of matrix-vector productsnr. of matrix-vector products

gmres(m)

20

30

150

50

0 200 400 600 800 1000 1200

2

0

-2

-4

-6

-8

Convection-diffusion problem with strong convection 

 Restarted GMRES versus GCROT, which maintains 
orthogonality against sequence of  selected subspaces. 

 Time-wise the advantage of  GCROT is even larger as working 
with a smaller subspace is much faster. 



Good reading 

 GMRES: a generalized minimal residual algorithm for solving a 
nonsymmetric linear systems, Saad, Schultz, SIAM SSISC, 1986. 

 A flexible inner-outer preconditioned GMRES algorithm, Saad, SIAM J. 
Sci. Statist. Comput., 1993 

 GMRESR: a family of nested GMRES methods, van der Vorst, Vuik, Num. 
Lin. Alg. Appl., 1994 

 BiCGStab: A fast and smoothly converging variant of Bi-CG for the 
solution of non-symmetric linear systems, van der Vorst, SIAM SISC 1992 

 Nested Krylov methods based on GCR, de Sturler, J. Comp. Appl. Math., '96 
(GCRO) 

 Truncation Strategies for optimal Krylov subspace methods, de Sturler, 
SIAM SISC, 1999 (GCROT) 

 Recycling Krylov Subspaces for Sequences of Linear Systems, Parks, de 
Sturler, Mackey, Johnson, Maiti, SIAM SISC 28(5), 2006 

 Recycling Subspace Information for Diffuse Optical Tomography, Kilmer, 
de Sturler, SIAM SISC 27(6), 2006 

 Probing methods for saddle-point problems, Siefert, de Sturler, Elec. Trans. 
Numer. Anal. (ETNA), 2006  



Good Reading 
 Preconditioners for generalized saddle-point problems, PhD 

Thesis, Siefert, UIUC 2006 
 Improved Scaling for Quantum Monte Carlo on Insulators, 

Ahuja, Clark, de Sturler, Ceperley, and Kim, SIAM SISC 33(4), 
2011 

 Recycling Krylov Subspaces and Preconditioners, PhD Thesis, 
Ahuja, Virginia Tech, 2011 

 Large-scale topology optimization using preconditioned 
Krylov subspace methods with recycling, Wang, de Sturler, 
Paulino, IJNME 69, 2007 

 www.math.vt.edu/people/sturler/index.html 


	Iterative Linear Solvers and Jacobian-free Newton-Krylov Methods
	Overview
	Inexact Newton
	Inexact Newton Iteration
	Approximating the Jacobian-vector Product
	Krylov Methods Crash Course
	Choices from Krylov Space
	Approximation by Matrix Polynomials
	Convergence Bounds
	Krylov Methods Crash Course
	Minimum Residual Solutions: GMRES
	Minimum Residual Solutions: GMRES
	Minimum Residual Solutions: GMRES
	Conjugate Gradient Method
	Conjugate Gradients method
	Preconditioned CG
	CG is Sensitive
	BiCGStab
	BiCGStab
	Preconditioning
	Preconditioning
	Further discussion
	Probing 
	Probing
	Probing
	Probing
	Probing
	FGMRES
	FGMRES					(Saad’93)
	Other Variants
	Solver Variants
	Solver Variants
	GCROT: Selective orthogonality
	Good reading
	Good Reading
	Good Reading
	Good reading
	Slide Number 38



