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Solving Sequences of Linear Systems 

 Many applications involve a sequence or collection of systems 
with small or localized changes in space or structure 
 Time-dependent/time-like problems, nonlinear problems 

and optimization, adaptive discretizations and 
representations 

 Systems depend (nonlinearly) on multiple parameters 
 Inverse problems and parameter estimation, Monte Carlo 

and Markov Chain Monte Carlo methods, design, model 
reduction 

 Uncertainty quantification, reliability (with design) 
 Application requires solution of hundreds to thousands of 

large, sparse, linear systems 
 Discretization and coupling of ever more complex problems 

leads to very large linear systems 
 



Sequences of Linear Systems 

 Important trends: 
 Simulations increasingly part of larger analysis, including 

design, uncertainty/reliability, inverse problems 
 Simulations often involve parameters/parameter space 
 Simulations involve wide ranges of scales and multi-

physics, leading to problems of intractable size. Need to 
drastically reduce the effective number of unknowns: 
model reduction, parameterizing problems, adaptive 
meshing 

 We are moving from generic models with idealized 
properties to realistic models individualized by 
parameterization (with uncertainty) – such models need to 
calibrated and then simulated 

 Simulation also used to find parameters that cannot be 
measured directly 

 New architectures for HPC require new algorithms, but 
significant support for solving many related problems 



Sequences of Problems  

 These trends have wider implications for simulation, 
optimization, design, and so on 

 Consider sequences of nonlinear problems, optimizations, 
inverse problems, … 
 Directly propagate solution spaces or spaces 

containing/near solution (continuation) 
 Use of model reduction in inverse problems, optimization, 

UQ 
 Parameterizing problems and how to solve such 

parameterized problems efficiently 
 

 



Solving Sequences of Linear Systems 

 Even though we can solve linear systems efficiently, we need 
to reduce the amount of work across multiple systems 

 Fast solution by exploiting the slowly changing nature of 
problem or special structural changes 

 Obvious: use previous solution as starting guess for 
subsequent problem (or space of solutions - Fischer) 

 Recycle (adapt & reuse) search spaces from previous problems 
to improve rate of convergence 

 Recycle preconditioners (𝐴𝐴 = 𝑏 → 𝑃𝑃𝑃 = 𝑃𝑃) 
 Try to compute spaces of solutions for large number of 

problems directly 
 Recycle other expensive components for linear (or nonlinear) 

solver – Powell&Gordon recycle components of AMG 
(preconditioner) 



Applications and Examples 

 Crack propagation 
 Materials Science 
 Topology optimization (optimal design of structures) 
 Tomography 

 DOT 
 EIT (topology optimization) 

 Uncertainty quantification 
 Model reduction 
 (Quasi-)Newton methods – Nonlinear Systems/Optimization 
 Statistical mechanics 
 Lattice QCD 
 Quantum Monte Carlo 
 Computational mechanics, Acoustics 
 Nonlinear time-dependent PDEs, … 

 



Example: Topology Optimization 

Initial guess

Finite Element Analysis

Filtering Techniques

Optimization Process
(Optimality Criteria)

Sensitivity Analysis

Update Design Variables

|ρi
new – ρi

old| < tolerance

Plot Optimal Topology

False
True

Iteration 0

Iteration 4

Iteration 16

Iteration 106
(Final iteration)

Initial guess

Finite Element Analysis

Filtering Techniques

Optimization Process
(Optimality Criteria)

Sensitivity Analysis

Update Design Variables

|ρi
new – ρi

old| < tolerance

Plot Optimal Topology

False
True

Iteration 0

Iteration 4

Iteration 16

Iteration 106
(Final iteration)

Optimize material distribution, r, in design domain 

Minimize compliance uTK(r)u, where K(r)u=f 

with Glaucio Paulino, UIUC 



Topology Optimization - Example 

with Glaucio Paulino, UIUC 



Krylov Methods Crash Course 

Solve Ax b , given initial solution 
0

x , residual 
0 0

r b Ax   
 
Solve for error, 

0 0
Ae r , by finding update from search space 

 

Generate a search space:    2 1
0 0 0 0 0

, span , , , , m
m

K A r r Ar A r A r   

 
Find update  0

,
m m

z K A r  by minimizing  

• error in suitable norm (typically for special matrices only) 
• residual in suitable norm 

Implemented through orthogonal projection (in suitable inner 
product) – can be expensive. 
 
Alternatively, give up on minimization and compute a cheap 
projection. Results in some of the most popular methods, but may 
have some robustness problems. 
 



Krylov Methods Crash Course 

Consider Ax b    (or preconditioned system PAx Pb ) 
Given 0x  and 0 0r b Ax  , compute optimal update 

m
z  from  

 
  1

0 0 0 0, span{ , , , }m mK A r r Ar A r  : 

 
 

 
 0 0

0 0 22, ,
min min

m mz K A r z K A r
b A x z r Az

 
     

Let 2 1
0 0 0 0

m
mK r Ar A r A r     , then mz K  , 

 
and we must solve the following least squares problem 

 2
0 0 0 0 0

m
mAK r Ar A r A r r        

GMRES – Saad and Schulz '86, GCR – Eisenstat, Elman, and Schulz '83 
 

 1
0 0 1 0 1 0 1 0

m
m m m

K r Ar A r p A r    
        

1m
p 

  arbitrary 

 

      0 1 0 1 0 0m m m m
r r Ap A r I Ap A r q A r         0 1

m
q   



Minimum Residual Solutions: GMRES 

Solve Ax b : Choose 
0

x ; set 
0 0

r b Ax  ; 
1 0 0 2

v r r , 0k  . 

while 
2k

r ‖ ‖  do 

 1k k        
 

1k k
v Av  ; 

 for 1j k  , 
  *

, 1j k j k
h v v   ; 

1 1 ,k k j k j
v v h v    ; 

 end 
 

1, 1 2k k k
h v   ; 

1 1 1,k k k k
v v h    ; 

 Solve LS 
1 0 2 2

min kr H      
2k

r  by construction  

 (in practice we update the residual of LS each step) 
end 

0k k
x x V   ; 

 0 1 1 1 0k kk k k
r r V H V r H        or simply 

k k
r b Ax   



Why solution from  projection on small space accurate? 

Krylov space is a space of polynomials in a matrix times a vector. 
 
Krylov space inherits the approximation properties of  
polynomials on the real line or in the complex plane. 
 
Let A be diagonalizable, 1A V V   (simplify explanation) 
Then 2 1 1 2 1A V V V V V V       and generally 1k kA V V  . 
So, the polynomial   0 1

m
m m

p t t t       applied to A gives 

 
    2 1

0 1 2
m

m m
p A V I V             and hence 

         1 1
1

diag , ,
m m m m n

p A Vp V V p p V       

 
The polynomial is applied to the eigenvalues individually.  
 
Approximate solutions to linear systems, eigenvalue problems, 
and more general problems using polynomial approximation can 
be analyzed/understood this way. 



Approximation by Matrix Polynomials 

Let 1A V V  , let  A   . 

If  1
1

m
p t t   for all t  , then   1

1m
p A A

   

Let  
0

r V  .  Then     1
1 0 1 0

i
m i m i i ii i

i

p A r v p v A r


 



      

Also        0 1 0
0

m m m i m i ii
r q A r I Ap A r v q        

 
We want  m i

q   small for all 
i

 . If we can construct such 

polynomials for modest m , we have an efficient  linear solver.  
 
This is possible if the region   is nice – small region away from 
origin: clustered eigenvalues 
 
If this is not the case, we improve by preconditioning:  PAx Pb    
s.t. PA has clustered eigenvalues and product with P  is cheap. 



Convergence Bounds 

Relate convergence to polynomials. Residual (error) at step m  

 0 0m m m
r r Az p A r    and   0m m

e p A e  

 

CG: 
 

       0 1 10 1
min max 0

m i m mip
e e p C q C q 


   

 

MINRES: 
 

       0 /2 2 /2 20 1
min max 0
m

m m i m mip
r r p C q C q 


   

(as CG for HPD matrices) 
 

GMRES:  
   

       0 0 1
min max
m

m m m mp A
r r V p V C C


    

 
   

 V  small: convergence determined by minimal polynomial 

 

GMRES (FOV): 
 

   0
0 1

2 min max
mm p W A

p

r r p 
 



   



What to Recycle? 

 Krylov methods build search space; get solution by projection 
 Building search space often dominates cost 
 Initial convergence often poor, reasonable size search space 

needed, then superlinear convergence 
 Get fast convergence rate and good initial guess immediately 

by recycling selected search spaces from previous systems 
 How to select the right subspace to recycle? 

 Invariant subspace - GMRESDR (Morgan'04, '95), with recycling: 
GCRODR (Parks&dSJM'06), RMINRES (Wang&dSP'07), RBiCG (2010) 

 Preconditioning based on invariant subspaces (mostly for fixed 
matrix): Vuik, Nabben, Saad, Erhel, Burrage, Loghin, Rey, Risler 

 Canonical angles between successive spaces - GCROT (dS'99), 
with recycling (Parks&dSJM'06) 

 Subspace from previous solutions - initial guess (Fischer‘96), for 
recycling/combined with invariant subspace (Kilmer&dS'06) 

 Structural update matrix in QMC – preconditioners Ahuja, dS et al '10 



How to Recycle? 

Solve Ax b  using recycled subspace/matrix U  (for new A): 
 
Compute AU C  , CR C   (QR), 1U UR   (implicit) 
Now AU C  and  *C C I  
 
Set  *

0r I CC b  , *
0x UC b , and 1 0 0/v r r  

Augmented Arnoldi: *
1 1m m m m m mAV CC AV V H CB V H      

 
Minimize  0 0 1m m mb A x Uz V y r Cz CBy V H y        

 
    1 1 0m mV e r H y C z By         (optimal) 

 
Solve 1 0mH y e r  and set z By   

0m mx x Uz V y     and   1 1 0m m mr V e r H y   (GCRO, dS’95) 



Recycling Krylov Subspaces Using GCRO 

By construction      * * *I CC A I CC A I CC     over 

     *
* 1

R ,C K I CC A v

   

 

So,  *I CC A  is self-adjoint if A self-adjoint and  

we can use MINRES, CG, etc   (Kilmer&dS’06,Wang et al’07) 
 
Analyze the convergence of GMRES, MINRES, CG,  

by considering    * *I CC A I CC   i.s.o.  *I CC A   

 
Convergence bounds from eigenvalues for MINRES or CG 
     Meinardus'63, Kaniel&Daniel'67,books Saad, Greenbaum, vdVorst 
Convergence bounds from field of values for GMRES 
     Eiermann'93, Greenbaum'97, Embree'99 



Recycling MINRES 

 More complicated than for GCRODR and RGCROT (for non-
Hermitian matrices) 

 For full recurrence methods we restart anyway (for a single 
system) with new recycle space to minimize effect of restarting 
on rate of convergence 

 For MINRES (CG) there is no restart and we do not replace the 
recycle space for a single system (non-optimal) 
 We do not want to keep all the Lanczos vectors 
 Method is cheaper so overhead more detrimental 

 
 Updating the recycle space  

 Periodically update the recycle space (for next system) with 
new Lanczos vectors (which can be discarded afterwards) 

 Must be done cheaply on the side 



Recycling MINRES 



Recycling MINRES 

Straightforward setup of  eigenvalue problem expensive 
All but one block can be written as recursion 
In newer version all C-blocks rewritten in terms of  
‘starting’ C and recursion over Lanczos vectors 



Topology Optimization Convergence Results 

Results: 84x28x14 mesh (107K dofs) and 
180x60x30 (1M dofs) (on PC) 
 
Currently more complicated models 
up to 2M dof  (on PC) 

, 



Convergence for Crack Propagation Problem 
From Philippe Geubelle and Spandan Maiti UIUC - AE 



Convergence Recycling Approximate Invariant Subspace 

Interested in convergence of    * *I CC A I CC   

CG for HPD: effective condition number (Erhel'00) and (Saad et 
al'00), but no bound for approx. invariant subspace 
 

Saad'97:     0m m d m U
r q A r q A P r  , with  m

q A  optimal for 
d
r  

and second term small due to  
 
Simoncini&Szyld'05 similar approach for convergence GMRES 
Can adapt analysis for starting with approx. invar. subspace  
(Parks'05 and Parks et al'06)    
 
For bound to prove fast convergence to very small residual,  must be very 
small – approximate invariant subspace very accurate. 
For recycling this would be annoying – we don’t get very small . 
We do get fast convergence …  



Convergence for Hermitian Case  

Solve Ax b , A Hermitian:   Qdiag
*

,
Y

A QY QY             

 
lQ  is invariant subspace of dim l . kC  ‘approximates’ subspace lQ  

where k l , and  
2

1
C

I Q     small. 
k n k

C W 
 
    unitary 

 

 min
Q Q

m  ,  max
Q Q

M  ,  min
Y Y

m  ,  max
Y Y

M   

 
 
Theorem Eigenvalue Bounds:  

   2 * * 2min 0, max 0,
Y Q Y Y Q Y

m m m z W AWz M M M        

 
 
This leads to well-known bound for improved condition number if 
deflated problem is definite (otherwise need some additional work) 



Change in Bounds on Spectrum 

Q
M

Y
M

Q
m

Y
m

Y
m

Y
M

 2 min 0,
Q Y

m m   2 max 0,
Q Y

M M 



RMINRES for Preconditioned Laplace Equation 

20 40 60 80 100 120 140 160 180
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

 

 

RMINRES(40,15) exact 
CG
MINRES
RMINRES(40,15) 1
RMINRES(40,15) 2
RMINRES(40,15) 3
RMINRES(40,15) 4
bound for RMINRES 4

Bound from first 25 eigenvalues 

 -   Dirichlet boundary conditions0u 
202 x 202 regular grid, IC(0) preconditioner 



RMINRES for Indefinite Problem 
diag( 9, 7, 5, ,187,189)A     

After first solve, first 4 eigenvectors accurate, 5th eigenvector poor: 

 21
Q Y

m m 

0 20 40 60 80 100 120 
-9 

-8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

0 

Iterations 

  

  

RMINRES(30,9) exact 
MINRES 
RMINRES(30,9) 1 
RMINRES(30,9) 2 
Bound RMINRES 1 

10
log r

After second solve:  
min

0.08 0.94   

positive but small 



Real 
experiment 

Part of  the  
acoustic  
FE mesh 

Acoustic FE/IFE mesh 
with solution 

Details:  
 2nd order acoustic Finite Elements 
 6th order acoustic Infinite Elements 
 ~10,000 degrees of  freedom 
 about 150 frequencies to be evaluated 

Acoustics Problems                         with Jan Bierman (BMW) 



Discretization 

Variational form and resulting matrix components: 

0



Tire Rolling Noise Modeling 

Equations for the interior and exterior acoustics simulation 
 

       2A p K i C M p f        

 
Right hand side depends on excitation frequency (from road texture) 
 
Problem needs to be solved for 100, ,1500    and 10   
So we need to solve 140 large linear systems (for small model problem) 
 
For full problem up to 500 frequencies 
 
Matrix components from interior domain are symmetric 
 
Matrix components from exterior domain are nonsymmetric 
 
In general, the exterior domain component is not a low rank update 



Acoustics – GCROT vs BiCGStab in # Matvecs 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
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Comparison of Matrix-vector Products

 

 

BiCGStab

Recycling GCROT



Real World Acoustics Problems 

2nd order acoust. finite elements 
~350,000 degrees of  freedom 
20 frequencies 

2nd order finite element 
8th order infinite elements 
~650,000 degrees of  freedom 
335 frequencies 



Results Car Interior Acoustic Cavity 

BiCGStab did not converge for this problem 



Results Sound Radiation of Tires 

RGCROT vs BiCGStab 
~ factor 10 cheaper in matrix-vector products 
~ factor 2.5 faster in time (factor 10 better than GMRES(250)) 



Conclusions, Extra Info, and Future Work 

 Recycling search spaces and preconditioners is very 
effective for range of applications 

 Techniques for recycling subspaces are fairly cheap  
 Effective convergence theory for recycling/projecting 

out approximate invariant subspace 
Modest accuracy needed for fast convergence 

 Best recycle space is open question (even Herm. case) 
 Need regular updating to track changes in problem 
 Recycling based directly on FOV or pseudospectra for  

highly nonnormal problems 
 Recycling preconditioners can take many forms 
 Software available (or soon): Trilinos at Sandia, or 

ask me 



Good reading 

 Recycling Krylov Subspaces for Sequences of Linear Systems, Parks, de 
Sturler, Mackey, Johnson, Maiti, SIAM SISC 28(5), 2006 

 Recycling Subspace Information for Diffuse Optical Tomography, Kilmer, 
de Sturler, SIAM SISC 27(6), 2006 

 Large-scale topology optimization using preconditioned Krylov subspace 
methods with recycling, Wang, de Sturler, Paulino, IJNME 69, 2007 

 Multilevel Sparse Approximate Inverse Preconditioners for Adaptive 
Mesh Refinement, Wang, de Sturler, Lin. Alg. Appl. vol. 431, 2009 

 Recycling Krylov Subspaces and Preconditioners, PhD Thesis, Ahuja 

 Improved Scaling for Quantum Monte Carlo on Insulators, Ahuja, Clark, 
de Sturler, Ceperley, and Kim, SIAM SISC 33(4), 2011 

 Krylov subspace methods for topology optimization and adaptive meshes, 
PhD Thesis, Shun Wang, UIUC/CS 2007 

 Topology Optimization with Adaptive Mesh Refinement, de Sturler, 
Paulino, Wang, Proc. 6th Intl Conf on Comput. of Shell and Spatial 
Structures IASS-IACM 2008 

 www.math.vt.edu/people/sturler/index.html 
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