Efficient solution of large systems of non-linear PDEs in science October 8, 2013

A Preconditioned Roe Scheme for All Mach Numbers

Philipp Edelmann (Max Planck Institute for Astrophysics)

in collaboration with: Fabian Miczek (formerly at MPA)
Friedrich Röpke, Alejandro Bolaños, S. Ohlmann
(Astrophysics, Universität Würzburg)
Christian Klingenberg, Markus Zenk
(Mathematics, Universität Würzburg)

Outline

(1) Compressible Hydrodynamics for Low Mach Numbers

2 Our Preconditioned Roe Scheme
(3) Fully-Implicit Hydrodynamics Code
(4) Benchmarks

Astrophysical Motivation

Mach number

$M=\frac{u}{c}$
sound speed in an ideal gas: $c=\sqrt{\gamma \frac{\rho}{\rho}}=\sqrt{\gamma R \frac{T}{\mu}} \propto \sqrt{\frac{T}{\mu}}$

- Flows in stellar interiors are poorly understood.
- 1D stellar evolution simulations use simple, physically motivated prescriptions of inherently multi-D phenomena (convective mixing, shear instabilities, ...).
- These flows involve very low Mach numbers and long time scales.

Astrophysical Motivation

Mach number

$M=\frac{u}{c}$
sound speed in an ideal gas: $c=\sqrt{\gamma \frac{\rho}{\rho}}=\sqrt{\gamma R_{\mu}^{\mu}} \propto \sqrt{\frac{T}{\mu}}$

- Flows in stellar interiors are poorly understood.
- 1D stellar evolution simulations use simple, physically motivated prescriptions of inherently multi-D phenomena (convective mixing, shear instabilities, ...).
- These flows involve very low Mach numbers and long time scales.

We need simulation codes that. . .

- ... can resolve flows at low Mach number accurately.
- ... can simulate long time scales efficiently.

Euler Equations

$$
\partial_{t}\left(\begin{array}{c}
\rho \\
\rho u \\
\rho v \\
\rho w \\
\rho E
\end{array}\right)+\partial_{x}\left(\begin{array}{c}
\rho u \\
\rho u^{2}+p \\
\rho u v \\
\rho u w \\
u(\rho E+p)
\end{array}\right)+\partial_{y}\left(\begin{array}{c}
\rho v \\
\rho u v \\
\rho v^{2}+p \\
\rho v w \\
v(\rho E+p)
\end{array}\right)+\partial_{z}\left(\begin{array}{c}
\rho w \\
\rho u w \\
\rho v w \\
\rho w^{2}+p \\
w(\rho E+p)
\end{array}\right)=0
$$

Euler Equations

$\partial_{t}\left(\begin{array}{c}\rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E\end{array}\right)+\partial_{x}\left(\begin{array}{c}\rho u \\ \rho u^{2}+p \\ \rho u v \\ \rho u w \\ u(\rho E+p)\end{array}\right)+\partial_{y}\left(\begin{array}{c}\rho v \\ \rho u v \\ \rho v^{2}+p \\ \rho v w \\ v(\rho E+p)\end{array}\right)+\partial_{z}\left(\begin{array}{c}\rho w \\ \rho u w \\ \rho v w \\ \rho w^{2}+p \\ w(\rho E+p)\end{array}\right)=0$

- introduce typical reference quantities: $\rho_{\mathrm{r}}, u_{r}, c_{\mathrm{r}}, x_{\mathrm{r}}, \ldots$
- non-dimensionalize quantities: $\rho=\hat{\rho} \rho_{\mathrm{r}}, u=\hat{u} u_{\mathrm{r}}, \ldots$

Euler Equations

- introduce typical reference quantities: $\rho_{\mathrm{r}}, u_{\mathrm{r}}, c_{\mathrm{r}}, X_{\mathrm{r}}, \ldots$
- non-dimensionalize quantities: $\rho=\hat{\rho} \rho_{\mathrm{r}}, u=\hat{u} u_{\mathrm{r}}, \ldots$
- asymptotic expansion in Mach number $M_{r}=\frac{u_{r}}{a_{r}}$

$$
\text { i.e. } \hat{\rho}=\hat{\rho}^{(0)}+M_{r} \hat{\rho}^{(1)}+M_{r}^{2} \hat{\rho}^{(2)}+\cdots
$$

Euler Equations

$\partial_{\hat{t}}\left(\begin{array}{c}\hat{\rho} \\ \hat{\rho} \hat{u} \\ \hat{\rho} \hat{V} \\ \hat{\rho} \hat{W} \\ \hat{\rho} \hat{E}\end{array}\right)+\partial_{\hat{x}}\left(\begin{array}{c}\hat{\rho} \hat{u} \\ \hat{\rho} \hat{u}^{2}+\frac{1}{M_{r}^{2}} \hat{p} \\ \hat{\rho} \hat{u} \hat{V} \\ \hat{\rho} \hat{u} \hat{w} \\ \hat{u}(\hat{\rho} \hat{E}+\hat{p})\end{array}\right)+\partial_{\hat{y}}\left(\begin{array}{c}\hat{\rho} \hat{V} \\ \hat{\rho} \hat{u} \hat{v} \\ \hat{\rho} \hat{V}^{2}+\frac{1}{M_{r}^{2}} \hat{p} \\ \hat{\rho} \hat{V} \hat{w} \\ \hat{v}(\hat{\rho} \hat{E}+\hat{p})\end{array}\right)+\partial_{\hat{z}}\left(\begin{array}{c}\hat{\rho} \hat{W} \\ \hat{\rho} \hat{u} \hat{w} \\ \hat{\rho} \hat{V} \hat{W} \\ \hat{\rho} \hat{w}^{2}+\frac{1}{M_{r}^{2}} \hat{p} \\ \hat{w}(\hat{\rho} \hat{E}+\hat{p})\end{array}\right)=0$

- introduce typical reference quantities: $\rho_{\mathrm{r}}, u_{\mathrm{r}}, c_{\mathrm{r}}, X_{\mathrm{r}}, \ldots$
- non-dimensionalize quantities: $\rho=\hat{\rho} \rho_{\mathrm{r}}, u=\hat{u} u_{\mathrm{r}}, \ldots$
- asymptotic expansion in Mach number $M_{r}=\frac{u_{r}}{C_{r}}$ i.e. $\hat{\rho}=\hat{\rho}^{(0)}+M_{\mathrm{r}} \hat{\rho}^{(1)}+M_{\mathrm{r}}^{2} \hat{\rho}^{(2)}+\cdots$

Two Decoupled Solution Spaces $\left(M_{\mathrm{r}} \rightarrow 0\right)$

- sound waves governed by linear wave equation
- $\hat{p}=\hat{p}^{(0)}+M_{\mathrm{r}} \hat{p}^{(1)}$
- incompressible Euler equations
- $\hat{p}=\hat{p}^{(0)}+M_{\mathrm{r}}{ }^{2} \hat{p}^{(2)}$

Gresho Vortex

- rotating vortex
- dynamic pressure counteracts centrifugal force
- stationary solution to the incompressible Euler equations

Mach number

0.0009
0.0008
0.0007
0.0006
0.0005
0.0004
0.0003
0.0002
0.0001
0.0000

Gresho Vortex

Standard Roe scheme Mach number at $t=2$

$$
M=10^{-1}
$$

$M=10^{-2}$

$M=10^{-3}$

Gresho Vortex

The Roe Scheme

$$
F_{i+1 / 2}=\frac{1}{2}\left(F\left(U_{i+1 / 2}^{L}\right)+F\left(U_{i+1 / 2}^{R}\right)-\left|A_{\text {ioo }}\right|\left(U_{i+1 / 2}^{R}-U_{i+1 / 2}^{L}\right)\right)
$$

$A_{\text {roe }}$: flux Jacobian $\left(\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{U}}\right)$ evaluated at the Roe average state

The Roe Scheme

$A_{\text {roe }}$: flux Jacobian $\left(\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{U}}\right)$ evaluated at the Roe average state

Asymptotic Analysis

in primitive variables $\boldsymbol{V}=(\rho, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{p}, \boldsymbol{X})^{T}$
$\left(\frac{\partial F}{\partial U}\right)_{V}:=\frac{\partial V}{\partial U} \frac{\partial F}{\partial U} \frac{\partial U}{}$
$\left(\begin{array}{cccccc}q_{n} & \rho n_{x} & \rho n_{y} & \rho n_{z} & 0 & 0 \\ 0 & q_{n} & 0 & 0 & \frac{n_{x}}{\rho M_{i}^{2}} & 0 \\ 0 & 0 & q_{n} & 0 & \frac{n_{y}}{\rho M_{i}^{2}} & 0 \\ 0 & 0 & 0 & q_{n} & \frac{n_{z}^{2}}{\rho M_{t}^{2}} & 0 \\ 0 & \rho c^{2} n_{x} \rho c^{2} n_{y} \rho c^{2} n_{z} & q_{n} & 0 \\ 0 & 0 & 0 & 0 & 0 & q_{n}\end{array}\right)$

Asymptotic Analysis

in primitive variables $\boldsymbol{V}=(\rho, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{p}, \boldsymbol{X})^{T}$
$\left(\frac{\partial F}{\partial U}\right)_{V}:=\frac{\partial V}{\partial V} \frac{\partial F}{\partial U}$
$\left(\begin{array}{cccccc}q_{n} & \rho n_{x} & \rho n_{y} & \rho n_{z} & 0 & 0 \\ 0 & q_{n} & 0 & 0 & \frac{n_{x}}{\rho M_{i}^{2}} & 0 \\ 0 & 0 & q_{n} & 0 & \frac{n_{y}}{\rho M_{z}^{2}} & 0 \\ 0 & 0 & 0 & q_{n} & \frac{n_{z}^{2}}{\rho M_{z}^{2}} & 0 \\ 0 & \rho c^{2} n_{x} \rho c^{2} n_{y} \rho c^{2} n_{z} & q_{n} & 0 \\ 0 & 0 & 0 & 0 & 0 & q_{n}\end{array}\right)$

Asymptotic Analysis

in primitive variables $\boldsymbol{V}=(\rho, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{p}, \boldsymbol{X})^{T}$

$$
\left(\frac{\partial F}{\partial U}\right)_{V}:=\frac{\partial V}{\partial U} \frac{\partial F}{\partial U} \frac{\partial U}{\partial V}
$$

$\left(\begin{array}{cccccc}\mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) & 0 & 0 \\ 0 & \mathcal{O}(1) & 0 & 0 & \mathcal{O}\left(\frac{1}{M^{2}}\right) & 0 \\ 0 & 0 & \mathcal{O}(1) & 0 & \mathcal{O}\left(\frac{1}{M_{2}^{2}}\right) & 0 \\ 0 & 0 & 0 & \mathcal{O}(1) & \mathcal{O}\left(\frac{1}{M^{2}}\right) & 0 \\ 0 & \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) & 0 \\ 0 & 0 & 0 & 0 & 0 & \mathcal{O}(1)\end{array}\right)$

Asymptotic Analysis

 in primitive variables $\boldsymbol{V}=(\rho, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}, \boldsymbol{p}, \boldsymbol{X})^{T}$$$
\left(\frac{\partial F}{\partial U}\right)_{V}:=\frac{\partial V}{\partial V} \frac{\partial F}{\partial U} O V
$$

$\left(\begin{array}{ccccc}\mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) & 0 & 0 \\ 0 & \mathcal{O}(1) & 0 & 0 & \mathcal{O}\left(\frac{1}{\left(\frac{1}{M^{2}}\right)}\right. \\ 0 & 0 \\ 0 & 0 & \mathcal{O}(1) & 0 & \mathcal{O}\left(\frac{1}{M^{2}}\right) \\ 0 & 0 & 0 & \mathcal{O}(1) & 0 \\ 0 & \left.\frac{1}{M_{1}^{2}}\right) & 0 \\ 0 & \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

Roe matrix $\left|A_{\text {roe }}\right|_{V}$

Preconditioned Roe Scheme

modify the upwinding term to reduce artificial dissipation

$$
\boldsymbol{F}_{i+1 / 2}=\frac{1}{2}\left(\boldsymbol{F}\left(\boldsymbol{U}_{i+1 / 2}^{L}\right)+\boldsymbol{F}\left(\boldsymbol{U}_{i+1 / 2}^{R}\right)-\left(P^{-1}|P A|\right)_{\mathrm{roe}}\left(\boldsymbol{U}_{i+1 / 2}^{R}-\boldsymbol{U}_{i+1 / 2}^{L}\right)\right)
$$

Preconditioned Roe Scheme

modify the upwinding term to reduce artificial dissipation

$$
\boldsymbol{F}_{i+1 / 2}=\frac{1}{2}\left(\boldsymbol{F}\left(\boldsymbol{U}_{i+1 / 2}^{L}\right)+\boldsymbol{F}\left(\boldsymbol{U}_{i+1 / 2}^{R}\right)-\left(P^{-1}|P A|\right)_{\mathrm{roe}}\left(\boldsymbol{U}_{i+1 / 2}^{R}-\boldsymbol{U}_{i+1 / 2}^{L}\right)\right)
$$

Preconditioner by Weiss \& Smith (1995)

$$
\begin{aligned}
P_{V} & =\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \frac{\delta^{2}-1}{c^{2}} & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \delta^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
\delta & =\min \left(1, \max \left(M, M_{\mathrm{cut}}\right)\right)
\end{aligned}
$$

Preconditioned Roe Scheme

modify the upwinding term to reduce artificial dissipation

$$
\boldsymbol{F}_{i+1 / 2}=\frac{1}{2}\left(\boldsymbol{F}\left(\boldsymbol{U}_{i+1 / 2}^{L}\right)+\boldsymbol{F}\left(\boldsymbol{U}_{i+1 / 2}^{R}\right)-\left(P^{-1}|P A|\right)_{\mathrm{roe}}\left(\boldsymbol{U}_{i+1 / 2}^{R}-\boldsymbol{U}_{i+1 / 2}^{L}\right)\right)
$$

Preconditioner by Weiss \& Smith (1995)

$$
P_{V}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & \frac{\delta^{2}-1}{\sigma^{2}} & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \delta^{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$$
\delta=\min \left(1, \max \left(M, M_{\text {cut }}\right)\right)
$$

Asymptotic Behavior of $\left(P^{-1}|P A|\right)_{V}$

$$
\left(\begin{array}{cccc}
\mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}\left(\frac{1}{M^{2}}\right) & 0 \\
0 & \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) \mathcal{M}\left(\frac{1}{M^{2}}\right) & 0 \\
0 & \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}\left(\frac{1}{M^{2}}\right) & 0 \\
0 & \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}\left(\frac{1}{M^{2}}\right) & 0 \\
0 & \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}(1) \mathcal{O}\left(\frac{1}{M_{1}^{2}}\right) & 0 \\
0 & 0 & 0 & 0 \\
0 & 0(1)
\end{array}\right)
$$

A New Preconditioner

Preconditioner by Miczek (2013)

$$
\begin{gathered}
P_{V}=\left(\begin{array}{cccccc}
1 & n_{x} \frac{\rho \delta M_{r}}{c} & n_{y} \frac{\rho \delta M_{r}}{c} & n_{z} \frac{\rho \delta M_{r}}{c} & 0 & 0 \\
0 & 1 & 0 & 0 & -n_{x} \frac{\delta}{\rho c M_{r}} & 0 \\
0 & 0 & 1 & 0 & -n_{y} \frac{\delta}{\rho c M_{r}} & 0 \\
0 & 0 & 0 & 1 & -n_{z} \frac{\delta}{\rho c M_{r}} & 0 \\
0 & n_{x} \rho c \delta M_{\mathrm{r}} n_{y} \rho c \delta M_{\mathrm{r}} n_{z} \rho c \delta M_{\mathrm{r}} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \\
\delta=\frac{1}{\min \left(1, \max \left(M, M_{\text {cut }}\right)\right)}-1
\end{gathered}
$$

A New Preconditioner - Asymptotic Behavior

$\left(P^{-1}|P A|\right)_{V}$

Gresho Vortex - Revisited

Gresho Vortex

SLH (Seven League Hydro) Code

F. Miczek, F. K. Röpke, P. V. F. Edelmann

- solves the compressible Euler equations in 1-, 2-, 3-D
- explicit and implicit time integration
- flux preconditioning to ensure correct behavior at low Mach numbers
- other low Mach number schemes (e.g. AUSM ${ }^{+}$-up)
- works for low and high Mach numbers on the same grid
- several solvers for the linear system: BiCGSTAB, GMRES, Multigrid, (direct)
- fully MPI-parallelized
- arbitrary curvilinear meshes
- radiation in the diffusion limit
- general equation of state
- general nuclear reaction network

SLH (Seven League Hydro) Code

F. Miczek, F. K. Röpke, P. V. F. Edelmann

- solves the compressible Euler equations in 1-, 2-, 3-D
- explicit and implicit time integration
- flux preconditioning to ensure correct behavior at low Mach numbers
- other low Mach number schemes (e.g. AUSM ${ }^{+}$-up)
- works for low and high Mach numbers on the same grid
- several solvers for the linear system: BiCGSTAB, GMRES, Multigrid, (direct)
- fully MPI-parallelized
- arbitrary curvilinear meshes
- radiation in the diffusion limit
- general equation of state
- general nuclear reaction network

The Non-Linear System

- Discretize spatial terms first. (Method of Lines)

$$
\frac{\partial \boldsymbol{U}}{\partial t}=\boldsymbol{R}(\boldsymbol{U})
$$

- Explicit time step limited by sound speed (stability)
$\Delta t_{\text {explicit }} \leq \operatorname{CFL} \frac{\Delta x}{|u+c|} \stackrel{u \ll c}{\approx} \operatorname{CFL} \frac{\Delta x}{c}$
- Implicit time step limit by fluid velocity (accuracy) $\Delta t_{\text {implicit }} \leq \operatorname{CFL} \frac{\Delta x}{|u|}$
- Implicit time step larger by $1 / M$

Example Backward Euler

$$
\begin{array}{r}
\frac{\boldsymbol{U}^{n+1}-\boldsymbol{U}^{n}}{\Delta t}=\boldsymbol{R}\left(\boldsymbol{U}^{n+1}\right) \\
0=\Delta t \boldsymbol{R}\left(\boldsymbol{U}^{n+1}\right)-\boldsymbol{U}^{n+1}+\boldsymbol{U}^{n}
\end{array}
$$

- non-linear system of $5 N_{x} N_{y} N_{z}$ equations
- solve with Newton-Rapshon
- sparse Jacobian with dense 5×5 blocks

Time Stepping

- implicit time stepping using Explicit first stage, Singly Diagonally Implicit Runge-Kutta schemes (ESDIRK23, ESDIRK34, ESDIRK46, ESDIRK58)
- subsequent solution of $N_{\text {stage }}-1$ non-linear systems
- schemes offer an integrated error estimator
- lower limit in time step ensures it does not try to resolve sound waves
- pseudo time stepper to find steady states (e.g. hydrostatic equilibrium)

Non-Linear Solver

$$
\boldsymbol{D}_{i, j, k}(\boldsymbol{U})=\boldsymbol{R}_{i, j, k}(\boldsymbol{U})+c_{t} \boldsymbol{U}_{i, j, k}+\boldsymbol{C}_{i, j, k}=0
$$

- Newton-Raphson: $\boldsymbol{U}^{k+1}=\boldsymbol{U}^{k}-\left(\lambda \frac{\partial D^{k}}{\partial U}\right)^{-1} D^{k}$
- last RK stage as initial guess
- scaled norm as the convergence indicator:

$$
\frac{\left\|(D)_{q}\right\|}{\left\|(C)_{q}\right\|} \quad q \in\{\rho, \rho u, \cdots\}
$$

- typical criterion for convergence $\approx 10^{-7}$
- monitor the dominant component to detect stalled convergence

Computation of the Jacobian

- automatic differentiation
i.e. each quantity caries its derivatives w.r.t. every independent variable in addition to its value
- no additional calls to \boldsymbol{F} (but the single call is more expensive)
- no need to chose a step ϵ (as for finite differences)
- some additional programming effort necessary

Computation of the Jacobian

- automatic differentiation
i.e. each quantity caries its derivatives w.r.t. every independent variable in addition to its value
- no additional calls to \boldsymbol{F} (but the single call is more expensive)
- no need to chose a step ϵ (as for finite differences)
- some additional programming effort necessary
time to compute \boldsymbol{F} with/without derivative
- Roe scheme: ≈ 4
- AUSM $^{+}$-up: ≈ 17

Iterative Linear Solvers

- size of matrix: $n \times n=\left(5 N_{x} N_{y} N_{z}\right)^{2}\left(n \approx 10^{7}\right.$ for 128^{3} grid $)$
- non-zero entries: $13 \times 5^{2} \times N_{x} N_{y} N_{z}$
- density of Jacobian: $13 /\left(N_{x} N_{y} N_{z}\right)\left(\approx 6 \times 10^{-4} \%\right.$ for 128^{3} grid $)$
- no symmetry
- flexible linear solver framework to combine different solvers and preconditioners
- available methods: BiCGSTAB(ℓ), GMRES, Multigrid, ...
- available preconditioners: transformation to different variables, non-dimensionalization, inverse of the block-diagonal elements

Parallelization

- MPI
- domain decomposition and ghost cells
- each process computes its part of the Jacobian locally
- linear solvers work on distributed matrices
- OpenMP
- can be used in conjunction with MPI
- important on modern HPC systems with many cores per node
- reduces number of ghost cells per grid cell
- special effort taken to ensure that a thread always work on the same slice of an array

Benchmark Overview (Miczek, 2013)

Gresho vortex, ESDIRK34, Roe-Lowmach scheme advective CFL time step

Compared Solvers

- direct solver PARDISO
- BiCGSTAB(5)
- BiCGSTAB(5) with block Jacobian preconditioning
- Multigrid with block Jacobian preconditioning and GMRES(20) and BiCGSTAB(5) smoothing

Measure of Performance

- speedup in computation time with respect to explicit RK3 for the same physical simulation time

Conclusions

- Simulations of stellar interiors greatly benefit from implicit time stepping.
- Many traditional finite volume schemes show excessive dissipation at low Mach number flows.
- The Roe scheme can be modified to behave properly at low Mach numbers.
- Implicit time stepping is more efficient than explicit time stepping already at moderately low Mach numbers $\left(\approx 10^{-2}\right)$.
- Multigrid and block Jacobian preconditioning well also for large systems.

References

Miczek, F. 2013, PhD thesis, Technische Universität München Weiss, J. M. \& Smith, W. A. 1995, AIAA Journal, 33, 2050

