Newton-Krylov based continuation method to study convection in a tilted parallelepiped cavity.

D. Henry¹, H. Ben Hadid¹ and J.F. Torres^{1,2}

¹Laboratoire de Mécanique des Fluides et d'Acoustique, CNRS/Université de Lyon,

École Centrale de Lyon/Université Lyon 1/INSA de Lyon, ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France

² Graduate School of Engineering, Tohoku University, 6-6-04, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan

Efficient solution ... PDEs in science. October 7-9, 2013, Lyon. 1/20

Context

- Studies about convection and its stability:
 - Flow patterns: bifurcation diagram
 - Different influences: magnetic field, acoustic streaming, tilt...
 - Fundamental fluid mechanics and applications (crystal growth,...)
- Development of well-adapted methods:
 - Spectral finite-element method
 - Steady state solver
 - Continuation methods

Geometry of the heated cavity (square cross-section)

Equations

 $\nabla \cdot \mathbf{u} = 0,$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla \rho + Pr \nabla^2 \mathbf{u} + Pr Ra T(\cos(\theta) \mathbf{e}_x + \sin(\theta) \mathbf{e}_y),$$
$$\frac{\partial T}{\partial t} + (\mathbf{u} \cdot \nabla)T = \nabla^2 T,$$

with boundary conditions given by:

►
$$T = 1/2$$
 on $x = -1/2$ and $T = -1/2$ on $x = 1/2$,
► $\partial T/\partial z = 0$ on $z = -A_z/2$, $A_z/2$
► $\partial T/\partial y = 0$ on $y = -A_y/2$, $A_y/2$,
► $\mathbf{u} = 0$ on all the boundaries.
Rayleigh number, $Ra = \frac{\beta(T_H^* - T_C^*)gh^3}{\kappa\nu}$
Prandtl number, $Pr = \frac{\nu}{\kappa}$

Numerical methods

Spatial discretization: spectral finite element

-Spatial discretization obtained through Gauss-Lobatto-Legendre points distributions in each element.

-In our simple geometry, a single element is used.

Temporal discretization: splitting method

-The time discretization is carried out using a semi-implicit splitting scheme (Karniadakis *et al.* (1991))

-The non-linear terms are first integrated explicitly

-The pressure is then solved through a pressure equation enforcing the incompressibility constraint

-The linear terms are finally integrated implicitly.

At first order:
$$\frac{\mathbf{X}^{(n+1)} - \mathbf{X}^{(n)}}{\Delta t} = \mathcal{N}(\mathbf{X}^{(n)}, Ra) + \mathcal{L}\mathbf{X}^{(n+1)}.$$

Numerical methods

Continuation method: to calculate bifurcation diagrams

- Steady state calculation
- Solution stability: Arnoldi method or an eigenvalue is followed
- Direct calculation of bifurcation points
- Branching

Steady state solver (Mamun and Tuckerman (1995))

Time iteration:

Slightly modified:

Derived expressions:

Linearized expressions:

$$\frac{\mathbf{X}^{(n+1)} - \mathbf{X}^{(n)}}{\Delta t} = \mathcal{N}(\mathbf{X}^{(n)}, Ra) + \mathcal{L}\mathbf{X}^{(n+1)}.$$
$$\frac{0 - 0}{\Delta t} = \mathcal{N}(\mathbf{X}^{(n)}, Ra) + \mathcal{L}\mathbf{X}^{(n+1)}.$$
$$\mathbf{X}^{(n+1)} = -\mathcal{L}^{-1}\left[\mathcal{N}(\mathbf{X}^{(n)}, Ra)\right].$$
$$\mathbf{X}^{(n+1)} - \mathbf{X}^{(n)} = -\mathcal{L}^{-1}\left[\mathcal{N}(\mathbf{X}^{(n)}, Ra) + \mathcal{L}\mathbf{X}^{(n)}\right].$$

 $\delta \mathbf{X}^{(n+1)} - \delta \mathbf{X}^{(n)} = -\mathcal{L}^{-1} \left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) + \mathcal{L} \right] \delta \mathbf{X}^{(n)}.$ $\delta \mathbf{X}^{(n+1)} = -\mathcal{L}^{-1} \left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) \right] \delta \mathbf{X}^{(n)}.$

Steady-state problem: $\mathcal{N}(\mathbf{X}, Ra) + \mathcal{L}\mathbf{X} = 0$, solved with a Newton method, using $-\mathcal{L}^{-1}$ as a preconditioner: $-\mathcal{L}^{-1} \left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) + \mathcal{L} \right] \delta \mathbf{X} = -(-\mathcal{L}^{-1}) \left[\mathcal{N}(\mathbf{X}, Ra) + \mathcal{L} \mathbf{X} \right]$ $\mathbf{X} \leftarrow \mathbf{X} + \delta \mathbf{X}$.

Following eigenvalues

Arnoldi calculation:

-by time stepping the linearized problem equation

- -10 leading eigenvalues are calculated
- -the process is costly
- An eigenvalue is followed:

For a known steady solution **X**, calculation of an eigenvalue λ associated with a given eigenvector **h**:

$$\begin{bmatrix} \mathcal{N}_{\mathbf{X}} \left(\mathbf{X}, R \mathbf{a} \right) + \mathcal{L} \end{bmatrix} \mathbf{h} - \lambda \mathbf{h} = \mathbf{0}, \\ \mathbf{h}_{I} - q = \mathbf{0}.$$

One Newton step is:

$$\begin{bmatrix} \mathcal{N}_{\mathbf{X}} (\mathbf{X}, Ra) + \mathcal{L} - \lambda & -\mathbf{h} \\ e_{I}^{T} & 0 \end{bmatrix} \begin{bmatrix} \delta \mathbf{h} \\ \delta \lambda \end{bmatrix} = -\begin{bmatrix} [\mathcal{N}_{\mathbf{X}} (\mathbf{X}, Ra) + \mathcal{L}] \mathbf{h} - \lambda \mathbf{h} \\ 0 \end{bmatrix}$$
$$\mathbf{h} \leftarrow \mathbf{h} + \delta \mathbf{h},$$
$$\lambda \leftarrow \lambda + \delta \lambda.$$

Direct calculation of bifurcation points (Bergeon et al. (1998))

At such a point, \mathbf{X} is a solution and the Jacobian is singular, with a null eigenvector \mathbf{h} :

$$\begin{aligned} \mathcal{N}(\mathbf{X}, Ra) + \mathcal{L}\mathbf{X} &= 0, \\ \left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) + \mathcal{L}\right] \mathbf{h} &= 0, \\ \mathbf{h}_{l} - q &= 0. \end{aligned}$$

One Newton step is:

$$\begin{bmatrix} \mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) + \mathcal{L} & 0 & \mathcal{N}_{Ra}(\mathbf{X}, Ra) \\ \mathcal{N}_{\mathbf{X}, \mathbf{X}}(\mathbf{X}, Ra) \mathbf{h} & \mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) + \mathcal{L} & \mathcal{N}_{\mathbf{X}, Ra}(\mathbf{X}, Ra) \mathbf{h} \\ 0 & e_l^T & 0 \end{bmatrix} \begin{bmatrix} \delta \mathbf{X} \\ \delta \mathbf{h} \\ \delta Ra \end{bmatrix} = -\begin{bmatrix} \mathcal{N}(\mathbf{X}, Ra) + \mathcal{L} \mathbf{X} \\ [\mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) + \mathcal{L}] \mathbf{h} \\ 0 \end{bmatrix},$$
$$\mathbf{X} \leftarrow \mathbf{X} + \delta \mathbf{X},$$
$$\mathbf{h} \leftarrow \mathbf{h} + \delta \mathbf{h},$$
$$Ra \leftarrow Ra + \delta Ra.$$

At a primary bifurcation, **X** is the known conductive solution: $\begin{bmatrix} \mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) + \mathcal{L} & \mathcal{N}_{\mathbf{X}, Ra}(\mathbf{X}, Ra) \mathbf{h} \\ e_l^T & 0 \end{bmatrix} \begin{bmatrix} \delta \mathbf{h} \\ \delta Ra \end{bmatrix} = -\begin{bmatrix} \begin{bmatrix} \mathcal{N}_{\mathbf{X}}(\mathbf{X}, Ra) + \mathcal{L} \end{bmatrix} \mathbf{h} \\ 0 \end{bmatrix},$

> $\mathbf{h} \leftarrow \mathbf{h} + \delta \mathbf{h},$ $R\mathbf{a} \leftarrow R\mathbf{a} + \delta R\mathbf{a}.$

Linear solver at each Newton step

-We use the iterative GMRES solver, which was found more robust than the BCGS solvers.

-The Jacobian matrices are not calculated, but we know how to provide the matrix-vector products to GMRES.

-Different time iterations of the linearized problem are needed for that.

At each Newton step:

-One or two normal or linearized iterations to calculate the right-hand side term.

-One to five linearized iterations for the matrix-vector products at each step of GMRES.

Linear systems solved by GMRES with a precision of 10^{-2} Newton systems solved with a precision of 10^{-6} (L^2 norm of the right-hand-side of the Newton system).

Simulations of the tilted cavity

-Grid: $27 \times 27 \times 41$, i.e. 29 989 mesh points

-Four variables: three velocities, temperature, i.e. -119556 unknowns for steady state solving, steady eigenvalue calculation and primary bifurcation points

- -239 112 unknowns for secondary bifurcation points and oscillatory eigenvalue calculation
- -358 668 unknowns for Hopf bifurcation points
- -Middle-size problem run on
 - -Vectorial computer NEC SX8 at IDRIS
 - -Sequential computer SGI Altix UV 1000 at Ecole Centrale

Results: ho	orizont	al cavity						
	12							
<i>u</i> ,								
	6	P. S ₁ 1	B ₂	0 B ₃ 3				
$\begin{array}{c} 4 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$								
$ \begin{array}{c} 2 \\ 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$								
2000 2800 3000 3200 3400 3600 3800 4000 Ra								
Diagram	Steady state		Stability		Bifurcation point			
Nec SX8	Trivial	Conv.	Arnoldi	Eigenv.	Prim.	Sec.		
Single run	11	75	24	74	4	4		
pprox 1700s	0.2 s	2-10 s	40-60 s	2-5 s	2-6 s	10-20 s		
Time/Newt.		5.7 s/4		4.8s/4	4.7 s/4	12.8 s/5		
GMRES		58,72,94,95		28,44,70,74	57,58,76,75	42,38,59,52,68		
Unknowns		~120000		~ 120000	~ 120000	~ 240000		

Bifurcation diagram: solution branches obtained in the range $2000 \le Ra \le 10000$ and initiated from the first six primary bifurcations.

Bifurcation diagram: solution branches obtained in the range $6000 \le Ra \le 10000$ and initiated from the four primary bifurcations in this range (P_7 to P_{10}).

Solutions at Ra = 10000 on the different branches issued from the ten first primary bifurcation points. Note the different symmetries.

Results: inclined cavity

 $N\pm$ appear at $\theta = 0.263^{\circ}$; the collision between S_0 and S at $\theta = 0.2714^{\circ}$. Limiting values of θ for $N\pm$, S_d and N_d : $\theta = 9.235^{\circ}$, 9.445° and 19.56°.

SGI Altix UV 1000	S_d bif. point $(heta=2^\circ ightarrow9^\circ$: step $1^\circ)$			
\sim 240 000 Unknowns	Min.	Max.		
Time/Newt.	31.4 s/5	83.8 s/7		
GMRES	42,44,56,49,55	59,47,87,76,82,106,124		

Domains of existence of the stable solutions

Leading longitudinal roll L- solution (grey background), opposite longitudinal roll L+ solution (up-left directed oblique lines), two oblique roll $O\pm$ solutions (up-right directed oblique lines). Types of solutions: one in zones 1 and 2, two in 3 and 4, three in 5.

Conclusion

Very efficient method for bifurcation analysis in middle-size problems

- Continuation method
- Steady state solving
- Calculation of eigenvalues
- Calculation of bifurcation points
- Branching
- Interesting results obtained for a tilted cavity
 - Influence of the tilt on the bifurcation diagram
 - Existence range of the different stable solutions
- Tests to be done for the extension to larger-size problems
 - Use of parallel computing
 - Main problem: cost of Arnoldi calculations

Thank you for your attention