Newton-Krylov based continuation method to study convection in a tilted parallelepiped cavity.

$$
\text { D. Henry }{ }^{1} \text {, H. Ben Hadid }{ }^{1} \text { and J.F. Torres }{ }^{1,2}
$$

${ }^{1}$ Laboratoire de Mécanique des Fluides et d'Acoustique, CNRS/Université de Lyon,
École Centrale de Lyon/Université Lyon 1/INSA de Lyon, ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France
${ }^{2}$ Graduate School of Engineering, Tohoku University, 6-6-04, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan

Context

- Studies about convection and its stability:
- Flow patterns: bifurcation diagram
- Different influences: magnetic field, acoustic streaming, tilt...
- Fundamental fluid mechanics and applications (crystal growth,...)
- Development of well-adapted methods:
- Spectral finite-element method
- Steady state solver
- Continuation methods

Geometry of the heated cavity (square cross-section)

Equations

$$
\nabla \cdot \mathbf{u}=0
$$

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}+(\mathbf{u} \cdot \nabla) \mathbf{u}=-\nabla p+\operatorname{Pr} \nabla^{2} \mathbf{u}+\operatorname{Pr} \operatorname{Ra} T\left(\cos (\theta) \mathbf{e}_{x}+\sin (\theta) \mathbf{e}_{y}\right) \\
\frac{\partial T}{\partial t}+(\mathbf{u} \cdot \nabla) T=\nabla^{2} T
\end{gathered}
$$

with boundary conditions given by:

- $T=1 / 2$ on $x=-1 / 2$ and $T=-1 / 2$ on $x=1 / 2$,
- $\partial T / \partial z=0$ on $z=-A_{z} / 2, A_{z} / 2$
- $\partial T / \partial y=0$ on $y=-A_{y} / 2, A_{y} / 2$,
- $\mathbf{u}=0$ on all the boundaries.

Rayleigh number,
Prandtl number,

$$
\begin{aligned}
& \operatorname{Ra}=\frac{\beta\left(T_{H}^{*}-T_{C}^{*}\right) g h^{3}}{\kappa \nu} \\
& \operatorname{Pr}=\frac{\nu}{\kappa}
\end{aligned}
$$

Numerical methods

- Spatial discretization: spectral finite element
-Spatial discretization obtained through Gauss-LobattoLegendre points distributions in each element.
-In our simple geometry, a single element is used.
- Temporal discretization: splitting method
-The time discretization is carried out using a semi-implicit splitting scheme (Karniadakis et al. (1991))
-The non-linear terms are first integrated explicitly
-The pressure is then solved through a pressure equation enforcing the incompressibility constraint
-The linear terms are finally integrated implicitly.
At first order: $\frac{\mathbf{X}^{(n+1)}-\mathbf{X}^{(n)}}{\Delta t}=\mathcal{N}\left(\mathbf{X}^{(n)}, R a\right)+\mathcal{L} \mathbf{X}^{(n+1)}$.

Numerical methods

- Continuation method: to calculate bifurcation diagrams

- Steady state calculation
- Solution stability: Arnoldi method or an eigenvalue is followed
- Direct calculation of bifurcation points
- Branching

Steady state solver (Mamun and Tuckerman (1995))
Time iteration:

$$
\frac{\mathbf{X}^{(n+1)}-\mathbf{X}^{(n)}}{\Delta t}=\mathcal{N}\left(\mathbf{X}^{(n)}, R a\right)+\mathcal{L} \mathbf{X}^{(n+1)}
$$

Slightly modified:

$$
\frac{0-0}{\Delta t}=\mathcal{N}\left(\mathbf{X}^{(n)}, R a\right)+\mathcal{L} \mathbf{X}^{(n+1)}
$$

Derived expressions:

$$
\begin{aligned}
& \mathbf{X}^{(n+1)}=-\mathcal{L}^{-1}\left[\mathcal{N}\left(\mathbf{X}^{(n)}, R a\right)\right] \\
& \mathbf{X}^{(n+1)}-\mathbf{X}^{(n)}=-\mathcal{L}^{-1}\left[\mathcal{N}\left(\mathbf{X}^{(n)}, R a\right)+\mathcal{L} \mathbf{X}^{(n)}\right]
\end{aligned}
$$

Linearized expressions:

$$
\begin{aligned}
& \delta \mathbf{X}^{(n+1)}-\delta \mathbf{X}^{(n)}=-\mathcal{L}^{-1}\left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L}\right] \delta \mathbf{X}^{(n)} \\
& \delta \mathbf{X}^{(n+1)}=-\mathcal{L}^{-1}\left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)\right] \delta \mathbf{X}^{(n)}
\end{aligned}
$$

Steady-state problem: $\mathcal{N}(\mathbf{X}, R a)+\mathcal{L} \mathbf{X}=0$, solved with a Newton method, using $-\mathcal{L}^{-1}$ as a preconditioner:

$$
\begin{aligned}
-\mathcal{L}^{-1}\left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L}\right] \delta \mathbf{X} & =-\left(-\mathcal{L}^{-1}\right)[\mathcal{N}(\mathbf{X}, R a)+\mathcal{L} \mathbf{X}] \\
\mathbf{X} & \leftarrow \mathbf{X}+\delta \mathbf{X}
\end{aligned}
$$

Following eigenvalues

- Arnoldi calculation:
-by time stepping the linearized problem equation
-10 leading eigenvalues are calculated
-the process is costly
- An eigenvalue is followed:

For a known steady solution \mathbf{X}, calculation of an eigenvalue λ associated with a given eigenvector \mathbf{h} :

$$
\begin{array}{cl}
{[\mathcal{N} \mathbf{X}(\mathbf{X}, R a)+\mathcal{L}] \mathbf{h}-\lambda \mathbf{h}} & =0 \\
\mathbf{h}_{/}-q & =0
\end{array}
$$

One Newton step is:

$$
\begin{gathered}
{\left[\begin{array}{cc}
\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L}-\lambda & -\mathbf{h} \\
e_{l}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
\delta \mathbf{h} \\
\delta \lambda
\end{array}\right]=-\left[\begin{array}{c}
{\left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L}\right] \mathbf{h}-\lambda \mathbf{h}} \\
0
\end{array}\right]} \\
\mathbf{h} \leftarrow \mathbf{h}+\delta \mathbf{h}, \\
\lambda
\end{gathered}
$$

Direct calculation of bifurcation points (Bergeon et al. (1998))

At such a point, \mathbf{X} is a solution and the Jacobian is singular, with a null eigenvector \mathbf{h} :

$$
\begin{aligned}
\mathcal{N}(\mathbf{X}, R a)+\mathcal{L} \mathbf{X} & =0 \\
{\left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L}\right] \mathbf{h} } & =0 \\
\mathbf{h},-q & =0
\end{aligned}
$$

One Newton step is:

$$
\left[\begin{array}{ccc}
{\left[\begin{array}{c}
\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L} \\
\mathcal{N}_{\mathbf{X}, \mathbf{X}}(\mathbf{X}, R a) \mathbf{h} \\
0
\end{array}\right.} & 0 & \mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L} \\
\mathcal{N}_{R a}(\mathbf{X}, R a) \\
\mathcal{N}_{\mathbf{X}}, R a \\
e_{l}^{T}(\mathbf{X}, R a) \mathbf{h}
\end{array}\right]\left[\begin{array}{c}
\delta \mathbf{X} \\
\delta \mathbf{h} \\
\delta R a
\end{array}\right]=-\left[\begin{array}{c}
\mathcal{N}(\mathbf{X}, R a)+\mathcal{L} \mathbf{X} \\
{\left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L}\right] \mathbf{h}} \\
0
\end{array}\right],
$$

At a primary bifurcation, \mathbf{X} is the known conductive solution:

$$
\begin{aligned}
{\left[\begin{array}{cc}
\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L} & \mathcal{N}_{\mathbf{X}, R a}(\mathbf{X}, R a) \mathbf{h} \\
e_{l}^{T}
\end{array}\right] } & {\left[\begin{array}{c}
\delta \mathbf{h} \\
\delta R a
\end{array}\right]=-\left[\begin{array}{c}
{\left[\mathcal{N}_{\mathbf{X}}(\mathbf{X}, R a)+\mathcal{L}\right] \mathbf{h}} \\
0
\end{array}\right] } \\
\mathbf{h} & \leftarrow \mathbf{h}+\delta \mathbf{h}, \\
R a & \leftarrow R a+\delta R a .
\end{aligned}
$$

Linear solver at each Newton step

-We use the iterative GMRES solver, which was found more robust than the BCGS solvers.
-The Jacobian matrices are not calculated, but we know how to provide the matrix-vector products to GMRES.
-Different time iterations of the linearized problem are needed for that.

At each Newton step:
-One or two normal or linearized iterations to calculate the right-hand side term.
-One to five linearized iterations for the matrix-vector products at each step of GMRES.

Linear systems solved by GMRES with a precision of 10^{-2} Newton systems solved with a precision of 10^{-6}
(L^{2} norm of the right-hand-side of the Newton system).

Simulations of the tilted cavity

-Grid: $27 \times 27 \times 41$, i.e. 29989 mesh points
-Four variables: three velocities, temperature, i.e.
-119 556 unknowns for steady state solving, steady eigenvalue calculation and primary bifurcation points
-239 112 unknowns for secondary bifurcation points and oscillatory eigenvalue calculation
-358 668 unknowns for Hopf bifurcation points
-Middle-size problem run on
-Vectorial computer NEC SX8 at IDRIS
-Sequential computer SGI Altix UV 1000 at Ecole Centrale

Results: horizontal cavity

Diagram	Steady state		Stability		Bifurcation point	
Nec SX8	Trivial	Conv.	Arnoldi	Eigenv.	Prim.	Sec.
Single run	11	75	24	74	4	4
$\approx 1700 \mathrm{~s}$	0.2 s	$2-10 \mathrm{~s}$	$40-60 \mathrm{~s}$	$2-5 \mathrm{~s}$	$2-6 \mathrm{~s}$	$10-20 \mathrm{~s}$
Time/Newt.		$5.7 \mathrm{~s} / 4$		$4.8 \mathrm{~s} / 4$	$4.7 \mathrm{~s} / 4$	$12.8 \mathrm{~s} / 5$
GMRES		$58,72,94,95$		$28,44,70,74$	$57,58,76,75$	$42,38,59,52,68$
Unknowns		~ 120000		~ 120000	~ 120000	~ 240000

Bifurcation diagram: solution branches obtained in the range $2000 \leq R a \leq 10000$ and initiated from the first six primary bifurcations.

Bifurcation diagram: solution branches obtained in the range $6000 \leq R a \leq 10000$ and initiated from the four primary bifurcations in this range (P_{7} to P_{10}).

Solutions at $R a=10000$ on the different branches issued from the ten first primary bifurcation points. Note the different symmetries.

Results: inclined cavity

Bifurcation diagrams for inclined cavities:
$\theta=0^{\circ}$ (a) and $0.01^{\circ}(\mathrm{b})$ (left), $\theta=0.27^{\circ}(\mathrm{a})$ and $0.28^{\circ}(\mathrm{b})$ (right).

Path of the main bifurcation points

$N \pm$ appear at $\theta=0.263^{\circ}$; the collision between S_{0} and S at $\theta=0.2714^{\circ}$. Limiting values of θ for $N \pm, S_{d}$ and $N_{d}: \theta=9.235^{\circ}, 9.445^{\circ}$ and 19.56°.

SGI Altix UV 1000	S_{d} bif. point $\left(\theta=2^{\circ} \rightarrow 9^{\circ}:\right.$ step $\left.1^{\circ}\right)$	
~ 240 Mo0 Unknowns	Min.	Max.
Time/Newt.	$31.4 \mathrm{~s} / 5$	$83.8 \mathrm{~s} / 7$
GMRES	$42,44,56,49,55$	$59,47,87,76,88,106,124$

Domains of existence of the stable solutions

$$
\frac{\mathrm{O}_{-}^{+}}{+1}+
$$

Leading longitudinal roll L - solution (grey background), opposite longitudinal roll $L+$ solution (up-left directed oblique lines), two oblique roll $O \pm$ solutions (up-right directed oblique lines).
Types of solutions: one in zones 1 and 2, two in 3 and 4 , three in 5 .

Conclusion

- Very efficient method for bifurcation analysis in middle-size problems
- Continuation method
- Steady state solving
- Calculation of eigenvalues
- Calculation of bifurcation points
- Branching
- Interesting results obtained for a tilted cavity
- Influence of the tilt on the bifurcation diagram
- Existence range of the different stable solutions
- Tests to be done for the extension to larger-size problems
- Use of parallel computing
- Main problem: cost of Arnoldi calculations

Thank you for your attention

