Scalable Multi-level Preconditioners for Variable Viscosity Stokes Flow Problems Arising from Geodynamics

Dave May

Department of Earth Sciences
ETH Zürich, Switzerland (dave.may@erdw.ethz.ch)

Geodynamics :=???

Geodynamics :=???

Outline

- Geodynamic background and motivations
- Spatial discretisations for long term geodynamic applications
- Newton formulation
- Scalable preconditioners for Saddle point problems
- Two-dimensional geodynamic examples
- Geometric multi-grid with matrix-free smoothers
- Three-dimensional geodynamic applications

Convective Engine of the Earth

- Highly temperature dependent viscosity large contrast in material properties (lel0)
- Stokes like Rayleigh-Bénard convection with strongly variable viscosity

Regional Geodynamics Processes

- Topography variations
- Large variation in length scales
- Presence of faults (material failure)
- Melting
- Complex constitutive behaviour
- Large deformation
- Deformation past the onset of material failure

Coupled Regional / Global Processes

Coupled Regional / Global Processes

Coupled Regional / Global Processes

- Dynamics of small length scales influence large scale flow in the mantle
- Large variation in length scales
- Large deformation, coupled thermo-mechanical processes with material failure

Geology is Complex

- Zagros Mountains

- Small and large amplitude ductile folding
- Discontinuous material properties
- Faulting
- Small length scales
- High aspect ratio

Geology is Complex

- European Alps

- Inherently 3D
- Discontinuous properties
- Severe ductile folding + faulting
- Small length scales
"...a total mess"- even by geological standards

Geodynamic Motivations Continental rifting

- Follow the 4D evolution of rocks over
 millions year time spans \longrightarrow large deformation
- Complex constitutive laws
- Large contrast in material properties

- Deformation past the onset of material failure

Problem Statement

- Incompressible, Variable Viscosity (VV) Stokes:

$$
\begin{aligned}
& {\left[2 \eta D_{i j}(\boldsymbol{u})\right]_{, j}-p_{, i}=f_{i} \quad \text { in } \Omega} \\
& u_{k, k}=0 \\
& u_{i}=\bar{u}_{i} \quad \text { on } \Gamma_{D} \\
& \sigma_{i j} n_{j}=\bar{t}_{i} \quad \text { on } \Gamma_{N}
\end{aligned}
$$

- Non-linear constitutive behaviour
- Evolution of coefficients

$$
\frac{D \eta}{D t}=0, \quad \frac{D f_{i}}{D t}=0
$$

- Non-linear boundary conditions
- Conservation of Energy: $\frac{D T}{D t}=\left[\kappa T_{, k}\right]_{, k}+Q$

Problem Statement: Coefficients

- Incompressible, Variable Viscosity (VV) Stokes:

$$
\begin{aligned}
& {\left[2 \eta D_{i j}(\boldsymbol{u})\right]_{, j}-p_{, i}=f_{i} \quad \text { in } \Omega} \\
& u_{k, k}=0
\end{aligned}
$$

- Non-linear constitutive behaviour (η)

Arrhenius [u, p, T dependence]

$$
\eta=A\left(\sqrt{I_{2}^{\prime}}\right)^{\alpha} \exp \left(\frac{E+V p}{n R T}\right) \quad I_{2}^{\prime}=\frac{1}{2} D_{i j} D_{i j}
$$

Plasticity [u,p dependence]

$$
\begin{aligned}
& F_{s}:=\sqrt{J_{2}^{\prime}}-\tau_{\text {yield }}^{V M}, \quad \text { where } \tau_{\text {yield }}^{V M}:=\text { const. } \quad J_{2}^{\prime}=\frac{1}{2} \tau_{i j} \tau_{i j} \\
& F_{s}:=\sqrt{J_{2}^{\prime}}-\tau_{\text {yield }}^{D P}, \quad \text { where } \tau_{\text {yield }}^{D P}:=C_{0} \cos (\phi)+p \sin (\phi), \\
& \eta=\frac{\tau_{\text {yield }}}{2 \sqrt{I_{2}^{\prime}}} \quad \text { if } \sqrt{J_{2}^{\prime}}>\tau_{\text {yield }},
\end{aligned}
$$

- Boussinesq approximation $\left(f_{i}\right)$

$$
f_{i}=\rho_{0}\left[1-\alpha\left(T-T_{0}\right)\right] g_{i}
$$

Problem Statement

- Incompressible, Variable Viscosity (VV) Stokes:

$$
\begin{aligned}
& {\left[2 \eta D_{i j}(\boldsymbol{u})\right]_{, j}-p_{, i}=f_{i} \quad \text { in } \Omega} \\
& u_{k, k}=0 \\
& u_{i}=\bar{u}_{i} \text { on } \Gamma_{D}
\end{aligned}
$$

$$
\sigma_{i j} n_{j}=\bar{t}_{i} \quad \text { on } \Gamma_{N}
$$

- Non-linear constitutive behaviour
- Evolution of coefficients

$$
\frac{D \eta}{D t}=0, \quad \frac{D f_{i}}{D t}=0
$$

Use independent spatial discretisations for
(i) the flow variables (velocity, pressure)
\longrightarrow Mixed FEM [Q2-PI]
(ii) coefficients (viscosity, density)
\longrightarrow Lagrangian markers (aka Material Point Method)

Spatial Discretisation (FE)

Discrete Variational Problem (with interpolated coefficients)

Seek $\left(\boldsymbol{u}_{h}, p_{h}\right) \in \boldsymbol{V}^{h} \times Q^{h}$ with $\eta^{\lambda} \in X$ and $\boldsymbol{f}^{\lambda} \in(X)^{d}$ such that

$$
\left.\begin{array}{ll}
A\left(\boldsymbol{u}_{h}, \boldsymbol{v}_{h}\right)+B\left(\boldsymbol{v}_{h}, p_{h}\right) & =F\left(\boldsymbol{v}_{h}\right) \\
B\left(\boldsymbol{u}_{h}, q_{h}\right) & =0
\end{array}\right\} \quad \text { for all }\left(\boldsymbol{v}_{h}, q_{h}\right) \in \boldsymbol{V}_{0}^{h} \times Q^{h} .
$$

$$
\begin{array}{cc}
A(\boldsymbol{u}, \boldsymbol{v})=\int_{\Omega} \sum_{i, j=1}^{d} 2 \eta^{\lambda} D_{i j}(\boldsymbol{u}) D_{i j}(\boldsymbol{v}) d V, & \boldsymbol{V}:=(V)^{d}=\left\{\boldsymbol{v} \in\left(H^{1}(\Omega)\right)^{d} \mid \boldsymbol{v}=\overline{\boldsymbol{u}} \text { on } \Gamma_{D}\right\}, \\
B(\boldsymbol{v}, q)=\int_{\Omega} q \nabla \cdot \boldsymbol{v} d V, & \boldsymbol{V}_{0}:=\left(V_{0}\right)^{d}=\left\{\boldsymbol{v} \in\left(H^{1}(\Omega)\right)^{d} \mid \boldsymbol{v}=\mathbf{0} \text { on } \Gamma_{D}\right\}, \\
F(\boldsymbol{v})=\int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{f}^{\lambda} d V+\int_{\Gamma_{N}} \boldsymbol{v} \cdot \overline{\boldsymbol{t}} d S . & Q:=\left\{q \in L_{2}(\Omega): \int_{\Omega} q d V=0\right\}, \\
X:=\left\{x \in L_{2}(\Omega)\right\},
\end{array}
$$

- Reconstruct coefficients (viscosity, density) for the flow problem using material points

Spatial Discretisation (MPM)

- Reconstruct coefficients (viscosity, density) at quadrature points for the flow problem using material points

$$
\begin{aligned}
A(\boldsymbol{u}, \boldsymbol{v}) & =\int_{\Omega} \sum_{i, j=1}^{d} 2 \eta^{\lambda} D_{i j}(\boldsymbol{u}) D_{i j}(\boldsymbol{v}) d V \\
F(\boldsymbol{v}) & =\int_{\Omega} \boldsymbol{v} \cdot \boldsymbol{f}^{\lambda} d V+\int_{\Gamma_{N}} \boldsymbol{v} \cdot \overline{\boldsymbol{t}} d S
\end{aligned}
$$ (MPM) Sulsky \& Brackbill, JCP, (I99I)

[a] Local L2 projection (QI)
[b] Piecewise constant (PO)
[c] Piecewise linear (PI)

- viscosity, density

Newton Frameworlk

STOKES NON-LINEAR RESIDUALS

$$
\begin{aligned}
\hat{F}_{u_{i}} & :=\left[2 \eta(\boldsymbol{u}, p) D_{i j}(\boldsymbol{u})\right]_{, j}-p_{, i}-f_{i}(\boldsymbol{u}, p) \\
\hat{F}_{c} & :=u_{k, k}
\end{aligned}
$$

void FormFunction(Vec X, void *ctx) \{

- Extract u,p from X
- Update nonlinearities on markers

$$
f:=\tau_{I I}-\tau_{y} \leq 0
$$

$$
\begin{aligned}
& \tau_{I I}:=\sqrt{\frac{1}{2} \tau_{i j} \tau_{i j}} \\
& \eta_{v p}=\left\{\begin{array}{cl}
\frac{\tau_{y}}{\sqrt{2 \epsilon_{i j} \epsilon_{i j}}} & \text { if } \tau_{I I}>\tau_{y} \\
\eta & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

- Project marker properties to QP
- Evaluate FE Stokes residuals

$$
\mathcal{J}_{s}=\left[\begin{array}{cc}
A+\delta A & B+\delta B \\
B^{T}+\delta B^{T} & 0
\end{array}\right]
$$

$$
\begin{aligned}
F_{u}^{e} & =A^{e} u^{e}-B p^{e}-f^{e} \\
F_{c}^{e} & =\left(B^{e}\right)^{T} u^{e}
\end{aligned}
$$

Saddle Point Preconditioners

Newton update requires linear solve

$$
\mathcal{A} x=b
$$

The ideal approach should be optimal in the sense that the convergence rate of method will be bounded independently of:

- the discretisation parameters (e.g. grid resolution)
- the constitutive parameters (e.g. smooth vs. discontinuous viscosity)
- the constitutive behaviour (e.g. isotropic vs. anisotropic)

$$
\begin{aligned}
& \mathcal{A}=\left[\begin{array}{cc}
A+\delta A & B+\delta B \\
B^{T}+\delta B^{T} & 0
\end{array}\right] \\
& x=\left[\begin{array}{l}
\delta u \\
\delta p
\end{array}\right] \quad b=-\left[\begin{array}{l}
F_{u} \\
F_{c}
\end{array}\right]
\end{aligned}
$$

Newton MG for Saddle Point Systems

- Apply a Krylov method (e.g. FGMRES, GCR) directly to

$$
\mathcal{A} x=b
$$

right preconditioned with

$$
\begin{aligned}
\mathcal{B}_{s}=\left[\begin{array}{cc}
A^{\prime} & B \\
0 & -S^{*}
\end{array}\right] \text { where } \quad S^{*} & =\int_{\Omega_{e}} \frac{1}{\bar{\eta}_{e}} M_{i} M_{j} d V \\
S^{*} & \approx S=B^{T} A^{-1} B
\end{aligned}
$$

- Standard upper block triangular preconditioner, demonstrated to be effective forVV Stokes
$\begin{array}{lll}\text { See } & \text { - Elman's book (2005) } & \text { - Burstedde, CMAME, (2009) } \\ & \text { - Geenen et al, G3, (2009) } & \text { - Grinevich \& Olshanskii, SIAM J. Comput, (2009) }\end{array}$

Newton MG for Saddle Point Systems

- Apply a Krylov method (e.g. FGMRES, GCR) directly to

$$
\mathcal{A} x=b
$$

right preconditioned with

$$
\begin{aligned}
\mathcal{B}_{s}=\left[\begin{array}{cc}
A^{\prime} & B \\
0 & -S^{*}
\end{array}\right] \text { where } S^{*} & =\int_{\Omega_{e}} \frac{1}{\bar{\eta}_{e}} M_{i} M_{j} d V \\
S^{*} & \approx S=B^{T} A^{-1} B
\end{aligned}
$$

- Standard upper block triangular preconditioner, demonstrated to be effective forVV Stokes
$\begin{array}{rll}\text { See } & \text { - Elman's book (2005) } & \text { - Burstedde, CMAME, (2009) } \\ & \text { - Geenen et al, G3, (2009) } & \text { - Grinevich \& Olshanskii, SIAM J. Comput, (2009) }\end{array}$
- Applying the action of the Stokes preconditioner on a vector t

$$
s=\mathcal{B}_{s}^{-1} t
$$

requires the action of
$u=A^{\prime-1} v \longrightarrow$ Apply Algebraic MultiGrid (AMG) or Geometric MultiGrid (GMG) to \boldsymbol{A}^{\prime}

Two-dimensional Examples

Prototype geodynamic processes

Crustal/lithospheric Problem
(Boundary driven processes)

Length scale 10-100 km
heterogenity
weak density contrasts, gravitationally stable (density increases with depth) thick high viscosity layer.

Numerical realisations

Upper Mantle Problem
(Body force driven processes)

Length scale 100-1000 km
Reverted density gradient, thick low viscosity layer

[May, Le Pourhiet, JCP, In prep.]

Visco-plastic Shortening

Visco-plastic Shortening

Subduction: Coordinate Evolution

$$
\begin{aligned}
& \text { STOKES FLOW } \quad \frac{d \boldsymbol{x}}{d t}=\boldsymbol{u} \\
& \quad \text { + COORDINATE EVOLUTION } \quad \hat{F}_{u_{i}}:=\left[2 \eta\left(\boldsymbol{u}, p, \boldsymbol{x}^{\prime}\right) D_{i j}\left(\boldsymbol{u}, \boldsymbol{x}^{\prime}\right)\right]_{, j}-p_{, i}\left(\boldsymbol{x}^{\prime}\right)-f_{i}\left(\boldsymbol{u}, p, \boldsymbol{x}^{\prime}\right) \\
& \hat{F}_{c}:=u_{k, k}\left(\boldsymbol{x}^{\prime}\right) \\
& \quad \boldsymbol{x}^{\prime}=\boldsymbol{x}+\Delta t \boldsymbol{u}
\end{aligned}
$$

Second Invariant of strain rate

"sane" solution

Subduction: Coordinate Evolution

Subduction: Coordinate Evolution

Moving to 3D: pTatin3d

["p"s stands for PETSc, pragmatic and pedantic]

- Open source project with the following features
- Fully parallel (flat MPI), robust and scalable 3D FE-MPM discretisation and solvers for non-linear variable viscosity Stokes
- Physics is extensible
- Flexible solver design (defer as many choices as possible to run time)
- Low memory to maximize numerical resolution, maximize resources and permit wide usability to geodynamic community without massive HPC access
- Employ algorithms which exploit modern multi-core architectures. Target hardware; IBM BG/Q, Cray XE6

Parallel algebra support provided by PETSc (www.mcs.anl.gov/petsc)

Performance Issues

"Strong" smoothers require assembling operators (e.g. CG/ICC - GMRES/ILU)

STORAGE IS EXPENSIVE

A: (Q2) $64 \times 64 \times 64 \sim 19.3$ GB

$3 \times$ Aii: (Q2) $64 \times 64 \times 64 \sim 6.4$ GB

+ temporary vectors for the solver
+ whatever else you might need...
e.g. markers, quadrature point fields...

Performance Issues

"Strong" smoothers require assembling operators (e.g. CG/ICC - GMRES/ILU)

STORAGE IS EXPENSIVE

A: (Q2) $64 \times 64 \times 64 \sim 19.3 \mathrm{~GB}$
$3 \times$ Aii: $\quad(\mathrm{Q} 2) 64 \times 64 \times 64 \sim 6.4$ GB

> + temporary vectors for the solver + whatever else you might need...
> e.g. markers, quadrature point fields...

Weak scaling			
$M_{x} \times M_{y} \times M_{z}$	n_{p}	m_{x}	CPU time (sec)
$36 \times 36 \times 36$	1	36	$1.1066 \mathrm{e}+00$
$72 \times 36 \times 36$	2	36	$1.1409 \mathrm{e}+00$ (100\%)
$72 \times 72 \times 36$	4	36	$1.1981 \mathrm{e}+00$ (95\%)
$72 \times 72 \times 72$	8	36	$1.3956 \mathrm{e}+00$ (82\%)
$72 \times 72 \times 144$	16	36	$1.3991 \mathrm{e}+00$ (82\%)
$144 \times 144 \times 72$	32	36	$1.4139 \mathrm{e}+00$ (81\%)
$144 \times 144 \times 108$	48	36	$1.4249 \mathrm{e}+00(80 \%)$
$18 \times 18 \times 18$	1	18	$1.3685 \mathrm{e}-01$
$36 \times 18 \times 18$	2	18	$1.4262 \mathrm{e}-01(100 \%)$
$36 \times 36 \times 18$	4	18	$1.5121 \mathrm{e}-01$ (94\%)
$36 \times 36 \times 36$	8	18	$1.7698 \mathrm{e}-01$ (81\%)
$36 \times 36 \times 72$	16	18	$1.7826 \mathrm{e}-01$ (80\%)
$72 \times 72 \times 36$	32	18	$1.8086 \mathrm{e}-01$ (79\%)
$72 \times 72 \times 54$	48	18	$1.8214 \mathrm{e}-01$ (78\%)

"ulysse": [SGI Altix UV I00] 6 nodes; $8 \times$ Xeon E7-8837 (2.67GHz); 8 GB RAM/core

Performance of Matrix-Free (MF) SpIMV [weak scaling]

"hexagon": [Cray XE6] 696 nodes; 2×16 AMD Interlagos (2.3GHz); I GB RAM/core

Performance of Matrix-Free (MF) SpIMV [weak scaling]

"hexagon": [Cray XE6] 696 nodes; 2xI6 AMD Interlagos (2.3GHz); I GB RAM/core

Elements	Elements on		Efficiency	
per core	4096 cores		ASM	MF
2^{3}	32^{3}		0.32	0.21
4^{3}	64^{3}		0.90	0.51
8^{3}	128^{3}		0.83	0.92
16^{3}	256^{3}		0.85	0.99
24^{3}	384^{3}	$*$	0.99	

Performance of

Matrix-Free (MF) SpMV [wealk scaling]

"hexagon": [Cray XE6] 696 nodes; 2xI6 AMD Interlagos (2.3GHz); I GB RAM/core

MF is faster than ASM when number of elements per core is larger than 8. Typical scenario on fine levels.

Performance of MF-SpMV [strong scaling]

"hexagon": [Cray XE6] 696 nodes; 2xI6 AMD Interlagos (2.3GHz); I GB RAM/core

Excellent strong scaling when using more than 8 Q2 elements per core

Hybrid Multi Level Strategy for Au=v

Hybrid Multi Level Strategy for Au=v

Hybrid Multi Level Strategy for Au=v

Convergence History: Stolkes

- Sedimenting sphere $R=0.25$

$$
\Delta \eta=10^{4}
$$

- 3 time steps
- 32^3 elements
- 3 levels
- Cheby(4) + Jacobi smoother
- LU coarse

Hybrid Multi Level Strategy for Au=v

Single CPU test
* $32 \times 32 \times 32$: 4 MG levels
* Single iteration of Stokes solve
* A $u=v$ terminated when initial residual reduced by le6
* Smoother: Chebychev/Jacobi-6 iterations
* Coarse grid: LU

Hybrid Multi Level Strategy for Au=v

Single CPU test

* $32 \times 32 \times 32$: 4 MG levels
* Single iteration of Stokes solve
* $A u=v$ terminated when initial residual reduced by le6
* Smoother: Chebychev/Jacobi - 6 iterations
* Coarse grid: LU

Solve time (sec) (\#number of iterations)

Coarse level configuration	$\Delta \eta=10^{0}$	$\Delta \eta=10^{2}$	$\Delta \eta=10^{6}$	$\Delta \eta=10^{10}$	Mem. (GB)
A, M, M, M	51 (\#5)	123 (\#13)	532 (\#60)	1605 (\#179)	0.7
G,A, M, M	51 (\#5)	114 (\#12)	185 (\#20)	185 (\#20)	0.8
\% G, G, A, M	51 (\#5)	87 (\#9)	120 (\#13)	130 (\#14)	1.2
G, G, G, A	43 (\#5)	51 (\#6)	73 (\#9)	80 (\#10)	4.4

G = Galerkin : A = Assembled : M = Matrix-free

Hybrid Multi Level Strategy for Au=v

Single CPU test

* $32 \times 32 \times 32$: 4 MG levels
* Single iteration of Stokes solve
* $A u=v$ terminated when initial residual reduced by le6
* Smoother: Chebychev/Jacobi - 6 iterations
* Coarse grid: LU

Solve time (sec) (\#number of iterations)

Coarse level configuration	$\Delta \eta=10^{0}$	$\Delta \eta=10^{2}$	$\Delta \eta=10^{6}$	$\Delta \eta=10^{10}$	Mem. (GB)
A, M, M, M	51 (\#5)	123 (\#13)	532 (\#60)	1605 (\#179)	0.7
G,A, M, M	51 (\#5)	114 (\#12)	185 (\#20)	185 (\#20)	0.8
\% G, G, A, M	51 (\#5)	87 (\#9)	120 (\#13)	130 (\#14)	,
G, G, G, A	43 (\#5)	51 (\#6)	73 (\#9)	80 (\#10)	4.4

- Significant gains obtained from using "strong" coarse grid operators - memory increase is minimal
- Assembled Galerkin is 38% faster HOWEVER uses 3.7 times more memory

Convergence History: Viscous Block

- Sedimenting sphere
- 32^3 elements
- 4 levels
- Coarse Galerkin
- Cheby(4) + Jacobi smoother
- LU coarse

Parallel Performance

Cores Event	64	512	4096
MGSmooth Coarse	$1.5907 \mathrm{e}+02$	$2.9855 \mathrm{e}+01$	$8.8030 \mathrm{e}+00$
MatSolve* $^{\text {MGSmooth Fine }}$	$5.6882 \mathrm{e}+01$	$1.8791 \mathrm{e}+01$	$3.4849 \mathrm{e}+00$
MatMult* $^{\text {MecDot* }}$	$8.5636 \mathrm{e}+02$	$6.8653 \mathrm{e}+01$	$9.1118 \mathrm{e}+00$
VecMDot	$1.1249 \mathrm{e}+02$	$1.6264 \mathrm{e}+01$	
VecNorm*	$2.0199 \mathrm{e}+00$	$1.1783 \mathrm{e}+00$	$3.8708 \mathrm{e}-01$
$1.3234 \mathrm{e}+00$			
KSPGMRESOrthog	$1.1429 \mathrm{e}+0188 \mathrm{e}-01$		
$7.9125 \mathrm{e}+00$	$2.5994 \mathrm{e}+00$	$4.5767 \mathrm{e}+00$	$1.5306 \mathrm{e}-01$
KSPSolve	$9.6860 \mathrm{e}+02$	$1.2980 \mathrm{e}+02$	$2.1507 \mathrm{e}+01$
J KSP \#	24	24	23
A KSP \#	100	101	98
MGCoarse KSP \#	347	399	495

Excellent strong scaling.

 70\% efficiency from 64 to 4096 coresStopping conditions

$$
\begin{aligned}
& \delta_{J}^{\mathrm{rel}}=10^{-5} \\
& \delta_{A}^{\mathrm{rel}}=10^{-2} \\
& \delta_{A_{C}}^{\mathrm{rel}}=10^{-2}
\end{aligned}
$$

- Sedimenting sphere

$$
\begin{aligned}
R & =0.25 \\
\Delta \eta & =10^{4}
\end{aligned}
$$

- 96^3 elements
- 3 levels
- Cheby(I0) + Jacobi smoother
- Krylov coarse grid solver

Oblique Rifting

in collaboration with L. Le Pourhiet (UPMC, Paris)

Major oil reservoirs have been discovered within the last 10 years in the Equatorial Atlantic. These oil fields were not explored before as companies had classified such "oblique continental margins" as having very low oil potential - an assumption which was largely based on state-of-the-art 2D modeling.

3 branches of oblique rifting coexist

One branch is abandoned. The most oblique is favoured

Oblique Rifting

in collaboration with L. Le Pourhiet (UPMC, Paris)

Major oil reservoirs have been discovered within the last 10 years in the Equatorial Atlantic. These oil fields were not explored before as companies had classified such "oblique continental margins" as having very low oil potential - an assumption which was largely based on state-of-the-art 2D modeling.

3 branches of oblique rifting coexist

Strike slip systems in oblique settings have not been selfconsistently modelled before.

3D modelling of continental rifting and break-up is numerically challenging as it requires;

- large domains, $4000 \mathrm{~km} \times 4000 \mathrm{~km} \times 300 \mathrm{~km}$
- simulations to be performed over large time spans, > 30 million years
- resolving the influence of strongly non-linear material behaviour and large viscosity contrasts (le6) between thin layers (< 10 km)

One branch is abandoned. The most oblique is favoured

Understanding Origins of Obliquity

Non-linear, Arrhenius + Drucker Prager rheology (brittle / ductile)

Understanding Origins of Obliquity

Rifting phase (5-I0 Myr) Only models with shortening normal to extension develop oblique branches

Understanding Origins of Obliquity

Rifting phase (5-10 Myr)
Only models with shortening normal to extension develop oblique branches

Break-up phase (~20 Myr)
Once continental break-up occurs (in the south), model with no shortening develops oblique rifting branches, self consistently. The timing when obliquity occurs may help constrain boundary conditions.

Understanding Origins of Obliquity

Oblique margin crosscut by faults aligned with spreading direction

Once break-up occurs, it propagates by small segments with step over

Understanding Origins of Obliquity

At lower resolution, the asymmetry
of propagation, the small faults cutting the oblique margin are not resolved. Such structures are necessary to valid models from field geology

Understanding Origins of Obliquity

* Same model runs on 18 hours on 1024 cores [Cray XE6] due to good strong scaling capabilities

At lower resolution, the asymmetry
of propagation, the small faults cutting the oblique margin are not resolved. Such structures are necessary to valid models from field geology

Rifting at Scale

- Geometry aspect ratio: $12 \times 1.5 \times 6$
- Three level MG hierarchy
- Viscosity gradients largest in y (coarsening less frequently)
- Coarsen aggressively in directions with high aspect ratio

- Use Chebyshev + Jacobi smoothers
- Krylov coarse grid solver

Mesh I
$256 \times 32 \times 128$
$64 \times 16 \times 32$
$32 \times 16 \times 16$
30 million DOFs

Mesh 2
$512 \times 64 \times 256$
$128 \times 32 \times 64$
$64 \times 32 \times 32$
237 million DOFs

Mesh 3

$$
1024 \times 128 \times 512
$$

$256 \times 64 \times 128$
$128 \times 64 \times 64$
1.9 billion DOFs

- Results presented were performed using "Kraken" [Cray XT5]

Rifting at Scale

Mesh II	Mesh 2	Mesh 3
$256 \times 32 \times \mathrm{I} 28$	$5 \mathrm{I} 2 \times 64 \times 256$	$1024 \times \mathrm{I} 28 \times 5 \mathrm{I} 2$
30 million DOFs	237 million DOFs	1.9 billion DOFs

CPU time (sec) per iteration of Stokes problem, 15-20 iterations required per Newton step

	cores	Linear	Picard
Mesh 1	512	3.57	3.88
Mesh 2	4096	8.48	5.90
Mesh 3	32786	7.86	7.12

cores	Linear	Picard
2048	2.04	2.22
16384	4.56	4.71
strong scaling		

weak scaling

Rifting at Scale

Mesh I
$256 \times 32 \times 128$
30 million DOFs

Mesh 2

$512 \times 64 \times 256$ 237 million DOFs

Mesh 3

$1024 \times 128 \times 5 \mathrm{I} 2$
1.9 billion DOFs

CPU time (sec) per iteration of Stokes problem,
 15-20 iterations required per Newton step

	cores	Linear	Picard
Mesh 1	512	3.57	3.88
Mesh 2	4096	8.48	5.90
Mesh 3	32786	7.86	7.12

cores	Linear	Picard
2048	2.04	2.22
16384	4.56	4.71
strong scaling		

weak scaling

- Fixed three level hierarchy obviously prohibits possibility of perfect weak scaling, however 8 times larger problems requires <2 times more CPU time.
- Strong scaling is in the range of 20-43\% efficiency. Strongly influenced by massively parallel, small sub-domain coarse grid solver.
- Performing non-linear, high resolution 3D thermo-mechanically coupled visco-plastic (non-trivial) simulations is still challenging.

Conclusions and Outlook

I. Matrix Free (MF) SpMV kernels for Q2 elements reduce memory foot print, avoid the memory bandwidth bottleneck and thus scale well on parallel multi-core architectures
2. MF operators combined with Chebyshev/Jacobi can result in robust and efficient parallel MG smoothers for VV Stokes
3. Hybrid coarsening strategies can yield significant speed gains for "hard" problems
4. The distributed coarse grid solver is a scalability bottleneck. Further experimentation using (i) semi-redundant solves, (ii) AMG coarse grid solvers and (iii) Krylov methods with non-blocking global reductions needs to be conducted
5. Usage of hybrid MPI-OpenMP parallelism needs to be investigated

Thanks for your attention... questions?

