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 ierr = StokesVelocity_GetElementLocalIndices(vel_el_lidx,(PetscInt*)&elnidx_u[nen_u*e]);CHKERRQ(ierr);
 ierr = StokesPressure_GetElementLocalIndices(p_el_lidx,(PetscInt*)&elnidx_p[nen_p*e]);CHKERRQ(ierr);

 ierr = VolumeQuadratureGetCellData_Stokes(volQ,all_gausspoints,e,&cell_gausspoints);CHKERRQ(ierr);

 ierr = DMDAGetElementCoordinatesQ2_3D(elcoords,(PetscInt*)&elnidx_u[nen_u*e],LA_gcoords);CHKERRQ(ierr);

 ierr = DMDAGetScalarElementField(elp,nen_p,(PetscInt*)&elnidx_p[nen_p*e],Xp);CHKERRQ(ierr);

 for (p=0; p<ngp; p++) {
  PetscScalar xip[] = { XI[p][0], XI[p][1], XI[p][2] };
  ConstructNi_pressure(xip,elcoords,NIp[p]);

 P3D_evaluate_geometry_elementQ2(ngp,elcoords,GNI,detJ,dNudx,dNudy,dNudz);

 /* initialise element vector */
 PetscMemzero(Ye,sizeof(PetscScalar)*Q2_NODES_PER_EL_3D*3);
 for (p=0; p<ngp; p++) {
  fac = WEIGHT[p] * detJ[p];

  MatMultMF_Stokes_MixedFEM3d_A12(fac,0,0,0,0,elp,PETSC_NULL,dNudx[p],dNudy[p],dNudz[p],NIp[p],Ye);

 ierr = DMDASetValuesLocalStencil_AddValues_Stokes_Velocity(Yu,vel_el_lidx,Ye);CHKERRQ(ierr);
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Geodynamics := ???

2

F (x) = 0
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Outline

• Geodynamic background and motivations

• Spatial discretisations for long term geodynamic applications

• Newton formulation

• Scalable preconditioners for Saddle point problems

• Two-dimensional geodynamic examples

• Geometric multi-grid with matrix-free smoothers

• Three-dimensional geodynamic applications

3
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Convective Engine of the Earth

4
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http://dreamtigers.wordpress.com/2011/05/11/plate-tectonic-metaphor-illustrations-cmu/

• Long time scale process. Very viscous, 
creeping flow regime

• Highly temperature dependent viscosity - 
large contrast in material properties (1e10)

• Stokes like Rayleigh-Bénard convection 
with strongly variable viscosity
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Regional Geodynamics Processes

5

http://en.wikipedia.org/wiki/File:Tectonic_plate_boundaries.png

• Topography variations
• Large variation in length scales
• Presence of faults (material failure)
• Melting

• Complex constitutive behaviour
• Large deformation
• Deformation past the onset of 

material failure
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Coupled Regional / Global Processes
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Coupled Regional / Global Processes

• Dynamics of small length scales influence large scale 
flow in the mantle

• Large variation in length scales
• Large deformation, coupled thermo-mechanical 

processes with material failure
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Geology is Complex

• Zagros Mountains

7

• Small and large 
amplitude ductile folding

• Discontinuous material 
properties

• Faulting
• Small length scales
• High aspect ratio

Tuesday, October 8, 2013
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Geology is Complex

• European Alps

8

European plate 

Adriatic plate 

Ape
nn

ine
 sl

ab
 East Alpine slab 

Schmid et al. 2004 

(Kissling, 2012)

• Inherently 3D
• Discontinuous properties
• Severe ductile folding + faulting
• Small length scales

“...a total mess” - even by geological standards

Tuesday, October 8, 2013
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• Follow the 4D evolution of rocks over                        
millions year time spans          large deformation 

• Complex constitutive laws
• Large contrast in material properties
• Deformation past the onset of material failure

http://www.accessscience.com/loadBinary.aspx?
filename=208970FG0050.gif
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Continental rifting
Geodynamic Motivations
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Problem Statement

• Incompressible,  Variable Viscosity (VV) Stokes:

in Ω

Ω

10

�
2ηDij(u)

�

,j
− p,i = fi

uk,k = 0

• Evolution of coefficients
Dη

Dt
= 0,

Dfi

Dt
= 0

• Non-linear constitutive behaviour

• Non-linear boundary conditions

• Conservation of Energy:

ui = ūi on ΓD

σijnj = t̄i on ΓN

DT

Dt
=

�
κ T,k

�
,k

+ Q

Tuesday, October 8, 2013
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Problem Statement: Coefficients
• Incompressible,  Variable Viscosity (VV) Stokes:

11

in Ω

�
2ηDij(u)

�

,j
− p,i = fi

uk,k = 0

Fs :=
�

J �
2 − τV M

yield, where τV M
yield := const.

Fs :=
�

J �
2 − τDP

yield, where τDP
yield := C0 cos(φ) + p sin(φ),

η =
τyield

2
�

I �
2

if
�

J �
2 > τyield,

J �
2 = 1

2τijτij

I �
2 = 1

2DijDij

• Non-linear constitutive behaviour (η)

• Boussinesq approximation (fi)
fi = ρ0

�
1− α(T − T0)

�
gi

Arrhenius [u,p,T dependence]

Plasticity [u,p dependence]

η = A(
�

I �
2)

α exp
�

E + V p

nRT

�
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Use independent spatial discretisations for                                   

    (i) the flow variables (velocity, pressure) 

                      Mixed FEM [Q2-P1]

    (ii) coefficients (viscosity, density)             

                      Lagrangian markers

                      (aka Material Point Method)

Problem Statement

• Incompressible,  Variable Viscosity (VV) Stokes:

in Ω

Ω

12

�
2ηDij(u)

�

,j
− p,i = fi

uk,k = 0

• Evolution of coefficients
Dη

Dt
= 0,

Dfi

Dt
= 0

• Non-linear constitutive behaviour

ui = ūi on ΓD

σijnj = t̄i on ΓN

Tuesday, October 8, 2013



Oct 8, 2013 Efficient Solution of Nonlinear PDEs - Lyon 13

Discrete Variational Problem (with interpolated coefficients)

V := (V )d =
�

v ∈ (H1(Ω))d | v = ū on ΓD

�
,

V 0 := (V0)d =
�

v ∈ (H1(Ω))d | v = 0 on ΓD

�
,

Q :=
�

q ∈ L2(Ω) :
�

Ω
q dV = 0

�
,

X :=
�

x ∈ L2(Ω)
�

,

A(u,v) =
�

Ω

d�

i,j=1

2ηλDij(u)Dij(v) dV,

B(v, q) =
�

Ω
q∇ · v dV,

F (v) =
�

Ω
v · fλ dV +

�

ΓN

v · t̄ dS.

Seek (uh, ph) ∈ V h ×Qh with ηλ ∈ X and fλ ∈ (X)d such that

A(uh,vh) + B(vh, ph) = F (vh)
B(uh, qh) = 0

�
for all (vh, qh) ∈ V h

0 ×Qh.

Spatial Discretisation (FE)

• Reconstruct coefficients (viscosity, density) for 
the flow problem using material points

Tuesday, October 8, 2013
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Spatial Discretisation (MPM)

• Reconstruct coefficients (viscosity, density) at quadrature points for the 
flow problem using material points

A(u,v) =
�

Ω

d�

i,j=1

2ηλDij(u)Dij(v) dV,

F (v) =
�

Ω
v · fλ dV +

�

ΓN

v · t̄ dS.

Particle In Cell (PIC) Harlow 
& Welch, Phys. Fluids, (1965)

Material Point Method 
(MPM) Sulsky & Brackbill, 
JCP, (1991)

viscosity,	
 density

[a] Local L2 projection (Q1) [b] Piecewise constant (P0) [c] Piecewise linear (P1)

Tuesday, October 8, 2013
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Newton Framework

F̂ui :=
�
2η(u, p)Dij(u)

�

,j
− p,i − fi(u, p)

F̂c := uk,k

STOKES NON-LINEAR RESIDUALS

DISCRETISE

�
A + δA B + δB

BT + δBT 0

� �
δu
δp

�
= −

�
Fu

Fc

�

Fu = Au−Bp− f

Fc = BT u

void FormFunction(Vec X,void *ctx) {
  Extract u,p from X
  Update nonlinearities on markers

 

  Project marker properties to QP
  Evaluate FE Stokes residuals

}
F e

c = (Be)T ue

F e
u = Aeue −Bpe − fe

LINEARISE

Js =
�

A + δA B + δB
BT + δBT 0

�
STOKES JACOBIAN

Tuesday, October 8, 2013



Oct 8, 2013 Efficient Solution of Nonlinear PDEs - Lyon 16

Newton update requires linear solve

A x = b

The ideal approach should be optimal in the sense 
that the convergence rate of method will be 
bounded independently of:

These are a challenging set of requirements

!"#

$%&'(&%)*#'(+),-&)&#

• the discretisation parameters (e.g. grid resolution)

• the constitutive parameters (e.g. smooth vs. discontinuous viscosity)

• the constitutive behaviour (e.g. isotropic vs. anisotropic)

• and we desire that the solution is obtained in O(n) time... i.e. multigrid

Saddle Point Preconditioners

�
A + δA B + δB

BT + δBT 0

� �
δu
δp

�
= −

�
Fu

Fc

�

x =
�
δu
δp

�
A =

�
A + δA B + δB

BT + δBT 0

�

b = −
�
Fu

Fc

�

Tuesday, October 8, 2013
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Ax = b
right preconditioned with

where

• Apply a Krylov method (e.g. FGMRES, GCR) directly to

Bs =
�
A� B
0 −S∗

�
S∗ =

�

Ωe

1
η̄e

MiMj dV

Aii

Newton MG for 
Saddle Point Systems

See   - Elman’s book (2005)            - Burstedde, CMAME, (2009)
        - Geenen et al, G3, (2009)       - Grinevich & Olshanskii, SIAM J. Comput, (2009)

• Standard upper block triangular preconditioner, demonstrated to be effective for VV Stokes

S∗ ≈ S = BT A−1B

Tuesday, October 8, 2013
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Ax = b
right preconditioned with

where

• Apply a Krylov method (e.g. FGMRES, GCR) directly to

Bs =
�
A� B
0 −S∗

�
S∗ =

�

Ωe

1
η̄e

MiMj dV

Aii

requires the action of

• Applying the action of the Stokes preconditioner on a vector t

s = B−1
s t

u = A�−1v Apply Algebraic MultiGrid (AMG) or 
Geometric MultiGrid (GMG) to A’

Newton MG for 
Saddle Point Systems

See   - Elman’s book (2005)            - Burstedde, CMAME, (2009)
        - Geenen et al, G3, (2009)       - Grinevich & Olshanskii, SIAM J. Comput, (2009)

• Standard upper block triangular preconditioner, demonstrated to be effective for VV Stokes

S∗ ≈ S = BT A−1B
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Two-dimensional Examples

18

Crustal/lithospheric Problem
(Boundary driven processes)

Upper Mantle Problem
(Body force driven processes)

Layered material
strong upper crust Topography

Length scale 10-100 km

Length scale 100-1000 kmweak density contrasts, 
gravitationally stable
(density increases with depth)
thick high viscosity layer.

Reverted density gradient,
thick low viscosity layer 

dense rigid plate

weak less dense
material

Topography

Low viscosity lower crust  1021 Pa.s

Layered upper crust 
1024 Pa.s

1023 Pa.s

free slip2.5mm/yr
2.5mm/yr

120 km

30 km

Free Surface Free Surface

High viscosity lithosphere 1023 Pa.s 3300 kg/m3

Low viscosity asthenosphere 1021 Pa.s 3200 kg/m3

70
0 

km

3000 km

faults
folds

heterogenity

ductile !ow at depth

Prototype geodynamic processes

Numerical realisations

[May, Le Pourhiet, JCP, In prep.]
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Visco-plastic Shortening

19
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Subduction: Coordinate Evolution

21

Velocity Arrows scaled by 0.1 as compared to sane exemple
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Second invariant of strain rate

Stabilised run with dt = 6e-4, ksp rtol 0.1, snes atol 1e-2

Velocity Arrows scaled by 0.1 as compared to sane exemple
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Second invariant of strain rate

Stabilised run with dt = 6e-4, ksp rtol 0.1, snes atol 1e-2

F̂ui :=
�
2η(u, p,x�)Dij(u,x�)

�

,j
− p,i(x�)− fi(u, p,x�)

F̂c := uk,k(x�)

x� = x + ∆t u

dx

dt
= uSTOKES FLOW

+ COORDINATE EVOLUTION

“sane” solution
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Velocity Arrows scaled by 0.1 as compared to sane exemple
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Second invariant of strain rate

Stabilised run with dt = 6e-4, ksp rtol 0.1, snes atol 1e-2

Subduction: Coordinate Evolution
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Velocity Arrows scaled by 0.1 as compared to sane exemple
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dt = 6.10;' for stabilised runs
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0 4 8 12 16 >20

Second invariant of strain rate

Stabilised run with dt = 6e-4, ksp rtol 0.1, snes atol 1e-2

Subduction: Coordinate Evolution

• Gained temporal stability in ALE coordinate update
• Overall “cost” of non-linear solution is less, or 

comparable to explicit method
• This could be improved with better 

preconditioning of the viscous block
• Likely to be less critical once material non-

linearities are included 
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• Open source project with the following features

• Fully parallel (flat MPI), robust and scalable 3D FE-MPM discretisation and 
solvers for non-linear variable viscosity Stokes

• Physics is extensible

• Flexible solver design (defer as many choices as possible to run time) 

• Low memory to maximize numerical resolution, maximize resources and 
permit wide usability to geodynamic community without massive HPC access

• Employ algorithms which exploit modern multi-core architectures.           
Target hardware; IBM BG/Q, Cray XE6 

[“p” stands for PETSc, pragmatic and pedantic]

Parallel algebra support provided by PETSc (www.mcs.anl.gov/petsc)

Moving to 3D: pTatin3d

Tuesday, October 8, 2013
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“Strong” smoothers require assembling operators (e.g. CG/ICC - GMRES/ILU)

STORAGE IS EXPENSIVE
A:         (Q2) 64 x 64 x 64 ~ 19.3 GB
3 x Aii:   (Q2) 64 x 64 x 64 ~ 6.4 GB

+ temporary vectors for the solver
+ whatever else you might need...

e.g. markers, quadrature point fields...

Performance Issues

Tuesday, October 8, 2013
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1.3 Ulysse

Table 6: Performance of assembled matrix, mat-vec product, y = Ax on Ulysse.
Weak scaling. mx is the subdomain size.

Mx ×My ×Mz np mx CPU time (sec)
36× 36× 36 1 36 1.1066e+00
72× 36× 36 2 36 1.1409e+00 (100%)
72× 72× 36 4 36 1.1981e+00 (95%)
72× 72× 72 8 36 1.3956e+00 (82%)
72× 72× 144 16 36 1.3991e+00 (82%)
144× 144× 72 32 36 1.4139e+00 (81%)
144× 144× 108 48 36 1.4249e+00 (80%)

18× 18× 18 1 18 1.3685e-01
36× 18× 18 2 18 1.4262e-01 (100%)
36× 36× 18 4 18 1.5121e-01 (94%)
36× 36× 36 8 18 1.7698e-01 (81%)
36× 36× 72 16 18 1.7826e-01 (80%)
72× 72× 36 32 18 1.8086e-01 (79%)
72× 72× 54 48 18 1.8214e-01 (78%)

6

“ulysse”: [SGI Altix UV 100] 6 nodes;  8 x Xeon E7-8837 (2.67GHz); 8 GB RAM/core
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“Strong” smoothers require assembling operators (e.g. CG/ICC - GMRES/ILU)

STORAGE IS EXPENSIVE
A:         (Q2) 64 x 64 x 64 ~ 19.3 GB
3 x Aii:   (Q2) 64 x 64 x 64 ~ 6.4 GB

+ temporary vectors for the solver
+ whatever else you might need...

e.g. markers, quadrature point fields...

Performance Issues
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Performance of 
Matrix-Free (MF) SpMV [weak scaling]

application time of ASM-SpMV and MF-SpMV. It is apparent that the MF-273

SpMV out performs the assembled SpMV when sub-domains are ≥ 43 with274

speedup factors of approximately 1.2 and > 2.7 when sub-domains are ≥ 83.275

The speedup factor is observed to increase as the sub-domain size increases.276

When the sub-domains are large, the speed of ASM-SpMV is entirely limited277

by memory bandwidth. Thus improved data locality and cache re-use in the278

MF-SpMV yield faster matrix-vector products.
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Figure 1: Performance of SpMV for assembled (ASM) and matrix-free (MF) operators.

Left panel shows the weak scaling for ASM (dashed lines) and MF operators (solid lines).

The right panel shows the ratio of CPU time for ASM/MF versus number of cores. The

horizontal dashed line indicates the crossover point where MF is faster than ASM. [[NOTE:

I could add in 64x64x64 to see if the speedup staturates]]

279

11

MF is faster than ASM when number 
of elements per core is larger than 8. 
Typical scenario on fine levels.

“hexagon”: [Cray XE6] 696 nodes; 2x16 AMD Interlagos (2.3GHz); 1 GB RAM/core
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Figure 1: Performance of SpMV for assembled (ASM) and matrix-free (MF) operators.

Left panel shows the weak scaling for ASM (dashed lines) and MF operators (solid lines).

The right panel shows the ratio of CPU time for ASM/MF versus number of cores. The

horizontal dashed line indicates the crossover point where MF is faster than ASM. [[NOTE:

I could add in 64x64x64 to see if the speedup staturates]]

279

11

MF is faster than ASM when number 
of elements per core is larger than 8. 
Typical scenario on fine levels.

“hexagon”: [Cray XE6] 696 nodes; 2x16 AMD Interlagos (2.3GHz); 1 GB RAM/core

Table 1: Weak scaling: Parallel efficiency of SpMV (u = Av) from 8 → 4096 cores. Ideal
weak scaling is represented by a parallel efficiency of 1.0. (∗) indicates job required more
than 1 GB RAM/core

Elements Elements on Efficiency
per core 4096 cores ASM MF

23 323 0.32 0.21
43 643 0.90 0.51
83 1283 0.83 0.92
163 2563 0.85 0.99
243 3843 * 0.99

In Fig. 2 we report the speedup of the MF-SpMV obtained using four dif-280

ferent meshes with the total number of Q2 elements given by {323, 643, 1283, 3843}.281

For each of the four different meshes, we increase the number cores and report282

the speedup relative to the time obtained on {8, 64, 128, 512} cores respec-283

tively. In all experiments, we utilize all cores available on a node. The ideal284

speedup is denoted via the dashed lines for each test mesh. For each mesh,285

we scale the MF-SpMV up to 4096 cores and obtain parallel efficiencies of286

19%, 51%, 95% and 99% respectively.287

6.2. Approximate Smoothers288

In our matrix-free SpMV implementation outlined in Algorithm 1, we289

recompute J, J−1 and �J� at each quadrature point. This is advocated as290

storing J at each quadrature point for all elements would be prohibitively291

expensive. From a simple performance model, it is apparent that ≈ 50% of292

the the operations required to perform the SpMV are spent computing these293

terms. An obvious way to accelerate the MF-SpMV is to exploit the situation294

when the transformation J : Ω → � is affine. If we consider the underlying295

operations required to evaluate an element stiffness matrix associated with296

the viscous block, we have297

Ae =

�

Ω

BT DB dV ≈
Nq�

q=1

wqB
T (ξq)D(ξq)B(ξq)�J(ξq)� (25)

12
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Performance of 
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speedup factors of approximately 1.2 and > 2.7 when sub-domains are ≥ 83.275

The speedup factor is observed to increase as the sub-domain size increases.276
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by memory bandwidth. Thus improved data locality and cache re-use in the278

MF-SpMV yield faster matrix-vector products.
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Figure 1: Performance of SpMV for assembled (ASM) and matrix-free (MF) operators.

Left panel shows the weak scaling for ASM (dashed lines) and MF operators (solid lines).

The right panel shows the ratio of CPU time for ASM/MF versus number of cores. The

horizontal dashed line indicates the crossover point where MF is faster than ASM. [[NOTE:

I could add in 64x64x64 to see if the speedup staturates]]
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MF is faster than ASM when number 
of elements per core is larger than 8. 
Typical scenario on fine levels.

Table 1: Weak scaling: Parallel efficiency of SpMV (u = Av) from 8 → 4096 cores. Ideal
weak scaling is represented by a parallel efficiency of 1.0. (∗) indicates job required more
than 1 GB RAM/core

Elements Elements on Efficiency
per core 4096 cores ASM MF

23 323 0.32 0.21
43 643 0.90 0.51
83 1283 0.83 0.92
163 2563 0.85 0.99
243 3843 * 0.99

In Fig. 2 we report the speedup of the MF-SpMV obtained using four dif-280

ferent meshes with the total number of Q2 elements given by {323, 643, 1283, 3843}.281

For each of the four different meshes, we increase the number cores and report282

the speedup relative to the time obtained on {8, 64, 128, 512} cores respec-283

tively. In all experiments, we utilize all cores available on a node. The ideal284

speedup is denoted via the dashed lines for each test mesh. For each mesh,285

we scale the MF-SpMV up to 4096 cores and obtain parallel efficiencies of286

19%, 51%, 95% and 99% respectively.287

6.2. Approximate Smoothers288

In our matrix-free SpMV implementation outlined in Algorithm 1, we289

recompute J, J−1 and �J� at each quadrature point. This is advocated as290

storing J at each quadrature point for all elements would be prohibitively291

expensive. From a simple performance model, it is apparent that ≈ 50% of292

the the operations required to perform the SpMV are spent computing these293

terms. An obvious way to accelerate the MF-SpMV is to exploit the situation294

when the transformation J : Ω → � is affine. If we consider the underlying295

operations required to evaluate an element stiffness matrix associated with296

the viscous block, we have297

Ae =

�

Ω

BT DB dV ≈
Nq�

q=1

wqB
T (ξq)D(ξq)B(ξq)�J(ξq)� (25)

12

“hexagon”: [Cray XE6] 696 nodes; 2x16 AMD Interlagos (2.3GHz); 1 GB RAM/core
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Performance of 
MF-SpMV [strong scaling]
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Figure 2: Speedup (strong scaling) of the matrix free SpMV on finite element meshes
of different sizes; 323, 643, 1283, 3843. Dashed lines indicates actual speedup obtained,
optimal speedup is denoted via dashed lines.

where D is the constitutive tensor and B is the discrete form of the strain-rate298

operator299

L =





∂
∂x 0 0
0 ∂

∂y 0
0 0 ∂

∂z
∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x
0 ∂

∂z
∂
∂y





; B =





∂N
∂ξ 0 0
0 ∂N

∂η 0
0 0 ∂N

∂ζ
∂N
∂η

∂N
∂ξ 0

∂N
∂ζ 0 ∂N

∂ξ

0 ∂N
∂ζ

∂N
∂η





J−1 = B̄J−1 ≈ L (26)

13

19%

51%

95%

99%

Excellent strong scaling 
when using more than 8 
Q2 elements per core

“hexagon”: [Cray XE6] 696 nodes; 2x16 AMD Interlagos (2.3GHz); 1 GB RAM/core
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Hybrid Multi Level Strategy for Au=v

level = finest operator = { MF,  AS }

operator = { MF,  AS, Galerkin }

operator = { MF,  AS, Galerkin }level = “coarsest”

Geometric 
Multigrid
Hierarchy

PETSC_COMM_WORLD
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level = finest operator = { MF,  AS }

operator = { MF,  AS, Galerkin }

operator = { MF,  AS, Galerkin }level = “coarsest”

Geometric 
Multigrid
Hierarchy

PETSC_COMM_WORLD

Krylov + Jacobi

Repartition matrix to 
processor subset?

Parallel sparse direct

Krylov + Algebraic Multigrid

Krylov + exact/inexact
subdomain solvers (BJacobi, ASM)

PETSC_COMM_SUBSET

Tuesday, October 8, 2013



Oct 8, 2013 Efficient Solution of Nonlinear PDEs - Lyon 28

Hybrid Multi Level Strategy for Au=v

level = finest operator = { MF,  AS }

operator = { MF,  AS, Galerkin }

operator = { MF,  AS, Galerkin }level = “coarsest”

Geometric 
Multigrid
Hierarchy

PETSC_COMM_WORLD

Krylov + Jacobi

Repartition matrix to 
processor subset?

Parallel sparse direct

Krylov + Algebraic Multigrid

Krylov + exact/inexact
subdomain solvers (BJacobi, ASM)

PETSC_COMM_SUBSET
Krylov method: CG
Preconditioner: ASM/ILU(0); overlap 4 (2 Q2 elements)
Stopping condition: rtol = 1.0e-2
PETSC_COMM_WORLD
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Convergence History: Stokes

29
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Figure 3: Convergence history of u, v, w, p residuals (coloured lines) during the Stokes solve

with ∆η = 104 over 3 time steps. The circles plotted on top of the v momentum denote

the beginning of each Stokes iteration with respect to the number of V-cycles (x-axis).

Grey lines indicate the convergence history associated with the Au = v solve performed

during each application of the Stokes preconditioner, (B∗)−1. The pronounced jump in

all residuals at 94 and 148 V-cycles corresponds to when the time step was taken. On

subsequent time steps, the previous solution to the Stokes problem is used as an initial

guess.

7.2. Coarse grid solver385

Selection of an appropriate coarse grid solver within the multigrid pre-386

conditioner is important for both the robustness and parallel scalability of387

the complete MG algorithm. The ideal approach would agglomerate the388

distributed coarse grids on processor subsets when the sub-domains become389

smaller than some specified threshold. For purely algebraic MG implemen-390

tations this is a relatively straight forward as it only requires re-partitioning391

of a matrix. In contrast, for geometric multigrid implementations (matrix392

free or otherwise) this operation is somewhat cumbersome. This is indeed393

a design limitation of our current implementation in which the coarse grid394

17

• Sedimenting sphere

• 3 time steps
• 32^3 elements
• 3 levels
• Cheby(4) + Jacobi 

smoother
• LU coarse

∆η = 104
R = 0.25
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* 32 x 32 x 32 : 4 MG levels

* Single iteration of Stokes solve

* A u = v terminated when initial residual reduced by 1e6

* Smoother: Chebychev/Jacobi - 6 iterations

* Coarse grid: LU

Single CPU test

Hybrid Multi Level Strategy for Au=v
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* 32 x 32 x 32 : 4 MG levels

* Single iteration of Stokes solve

* A u = v terminated when initial residual reduced by 1e6

* Smoother: Chebychev/Jacobi - 6 iterations

* Coarse grid: LU

Single CPU test

Coarse level 
configuration

Mem. 
(GB)

A, M, M, M 51 (#5) 123 (#13) 532 (#60) 1605 (#179) 0.7

G, A, M, M 51 (#5) 114 (#12) 185 (#20) 185 (#20) 0.8

G, G, A, M 51 (#5) 87 (#9) 120 (#13) 130 (#14) 1.2

G, G, G, A 43 (#5) 51 (#6) 73 (#9) 80 (#10) 4.4

∆η = 100 ∆η = 102 ∆η = 106 ∆η = 1010

Solve time (sec) (#number of iterations)

G = Galerkin  :  A = Assembled  :  M = Matrix-free

co
a
rs

e
Hybrid Multi Level Strategy for Au=v
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* 32 x 32 x 32 : 4 MG levels

* Single iteration of Stokes solve

* A u = v terminated when initial residual reduced by 1e6

* Smoother: Chebychev/Jacobi - 6 iterations

* Coarse grid: LU

Single CPU test

• Significant gains obtained from using “strong” coarse grid operators - memory increase is minimal
• Assembled Galerkin is 38% faster HOWEVER uses 3.7 times more memory 

Coarse level 
configuration

Mem. 
(GB)

A, M, M, M 51 (#5) 123 (#13) 532 (#60) 1605 (#179) 0.7

G, A, M, M 51 (#5) 114 (#12) 185 (#20) 185 (#20) 0.8

G, G, A, M 51 (#5) 87 (#9) 120 (#13) 130 (#14) 1.2

G, G, G, A 43 (#5) 51 (#6) 73 (#9) 80 (#10) 4.4

∆η = 100 ∆η = 102 ∆η = 106 ∆η = 1010

Solve time (sec) (#number of iterations)

G = Galerkin  :  A = Assembled  :  M = Matrix-free

co
a
rs

e
Hybrid Multi Level Strategy for Au=v
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Convergence History: Viscous Block

31

• Sedimenting sphere

• 32^3 elements
•4 levels

• Coarse Galerkin
• Cheby(4) + Jacobi 

smoother
• LU coarse
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Figure 4: Convergence history for the Au = v solve which is performed on the first iteration
of the Stokes problem. Solid lines denote coarse grid operators given by G, A,M,M .
Dashed lines denote coarse grid operators given by A, M, M . See text for further details.

must be distributed across all cores and must possess at least one Q2 element395

per core.396

We have experimented with using the parallel sparse direct solvers MUMPS397

(Amestoy et al., 2001) and SuperLU Dist (Li, 2005) for the coarse grid solver.398

In practice we found that even with small sub-domain, for example having399

≤ 43 Q2 elements (< 3000 unknowns), these packages either (i) required an400

unacceptably high setup time, (ii) used an unacceptable amount of memory,401

or (iii) were not stable over a wide enough range of mesh resolutions/parallel402

decompositions and model setups and would frequently produce segmenta-403

tion errors.404

Using AMG as coarse grid solver within the geometric multigrid hierarchy405

is another interesting alternative (e.g. Sundar et al., 2012). This approach has406

the advantage that (i) it should construct more effective coarse grid operators,407

in contrast to coarse grid operators defined by restricting/projecting coeffi-408

18

G: A: M: M
coarse fine
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Parallel Performance

32

• Sedimenting sphere

• 96^3 elements
• 3 levels
• Cheby(10) + Jacobi 

smoother
• Krylov coarse grid 

solver

∆η = 104
R = 0.25

Unlike in the iso-viscous example, to obtain constant iteration counts495

for the Stokes and viscous block sub-problems as the number of cores in-496

crease, it is necessary to converge the coarse grid problem. For this reason a497

more aggressive coarse grid solver is used in the variable viscosity problem.498

From Table. 6 we observe that the number of iterations used to converge499

the Stokes problem and the cumulative number of iterations used for all the500

A sub-problems is approximately constant from 64 to 4096 cores. Only the501

cumulative number of iterations used to solve the coarse grid problems is502

seem to increase with increasing core count. In all experiments, the coarse503

grid solve time is less than the time spend within the fine level smoother -504

however the difference decreases at high counts as the coarse grid solver iter-505

ations increase. The Chebyshev smoothers together with the nested Krylov506

approach used as the coarse grid solver are effective at minimizing the num-507

ber of global reductions, with only 7% of the total solve time at 4096 cores508

being spent in such operations. From 64 to 4096 cores we achieve an overall509

strong scaling parallel efficiency of 70%.510

Table 6: Strong scaling for variable viscosity sinker example, ∆η = 104. δJ
rel = 10−5,

δA
rel = 10−2. The mesh contained 963 elements on the finest mesh, with a total of three MG

levels. Events marked with (∗) indicate that the number of applications of the operation
increased significantly increased when the number of cores increased.

Cores 64 512 4096

Event

MGSmooth Coarse 1.5907e+02 2.9855e+01 8.8030e+00

MatSolve∗ 8.6882e+01 1.8791e+01 3.4849e+00

MGSmooth Fine 5.4153e+02 6.8653e+01 9.1118e+00

MatMult∗ 8.5636e+02 1.1249e+02 1.6264e+01

VecDot∗ 4.8386e+00 1.1783e+00 1.3234e+00

VecMDot 2.0199e+00 3.8708e-01 2.0188e-01

VecNorm∗ 1.1429e+01 2.5994e+00 4.4239e-01

KSPGMRESOrthog 7.9125e+00 1.5767e+00 1.5306e+00

KSPSolve 9.6860e+02 1.2980e+02 2.1507e+01

J KSP # 24 24 23

A KSP # 100 101 98

MGCoarse KSP # 347 399 495

23

δrel
J = 10−5

δrel
A = 10−2

δrel
AC

= 10−2

Stopping conditions
Excellent strong scaling.                          
70% efficiency from 64 to 4096 cores
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Oblique Continental
 Margins

Major oil reservoirs have been discovered 
within the last 10 years in the Equatorial 
Atlantic. These oil fields were not explored 
before as companies had classified such 
“oblique continental margins” as having very 
low oil potential - an assumption which was 
largely based on state-of-the-art 2D modeling. 

3 branches 
of oblique 
rifting co-
exist

105Ma

Bahamas 

Africa

South America

Central Atlantic

South America

AfricaCaribbean Sea

135 Ma

Subsiding Area
Upli!ting Area 
Thin continental crust
Oceanic crust

wide subsiding
 area

One branch is 
abandoned. 
The most 
oblique is 
favoured

Oblique Rifting
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Oblique Continental
 Margins

Major oil reservoirs have been discovered 
within the last 10 years in the Equatorial 
Atlantic. These oil fields were not explored 
before as companies had classified such 
“oblique continental margins” as having very 
low oil potential - an assumption which was 
largely based on state-of-the-art 2D modeling. 
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Oblique Rifting
in collaboration with L. Le Pourhiet (UPMC, Paris)

3D modelling of continental rifting and break-up   
is numerically challenging as it requires;
  - large domains, 4000 km x 4000 km x 300 km
  - simulations to be performed over large time    
    spans, > 30 million years 
  - resolving the influence of strongly non-linear   
    material behaviour and large viscosity 
    contrasts (1e6) between thin layers (< 10 km)

Strike slip systems in oblique 
settings have not been self-
consistently modelled before.
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Break-up phase (~20 Myr)                      
Once continental break-up occurs (in the south), 
model with no shortening develops oblique rifting 
branches, self consistently. The timing when obliquity 
occurs may help constrain boundary conditions.
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Understanding Origins of Obliquity
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Oblique margin cross-
cut by faults aligned 
with spreading direction

Once break-up occurs, 
it propagates by small 
segments with step over
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At lower resolution, the asymmetry                                         
of propagation, the small faults cutting the oblique 
margin are not resolved. Such structures are 
necessary to valid models from field geology
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At lower resolution, the asymmetry                                         
of propagation, the small faults cutting the oblique 
margin are not resolved. Such structures are 
necessary to valid models from field geology
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cut by faults aligned 
with spreading direction

Once break-up occurs, 
it propagates by small 
segments with step over

Vz = 5 mm/yr
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* 128 x 64 x 128 Q2 elements, 20 Myr (1800 time 
steps, full non-linear solve) 64 cores with                
~1 GB/core in ~11 days

* Same model runs on 18 hours on 1024 cores  
[Cray XE6] due to good strong scaling capabilities

Understanding Origins of Obliquity
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Rifting at Scale

38

• Geometry aspect ratio: 12 x 1.5 x 6
• Three level MG hierarchy

• Viscosity gradients largest in y (coarsening 
less frequently)

• Coarsen aggressively in directions with 
high aspect ratio

x

z

y

Mesh 1

    256 x 32 x 128
    64 x 16 x 32
    32 x 16 x 16
30 million DOFs

Mesh 2

    512 x 64 x 256
    128 x 32 x 64
    64 x 32 x 32
237 million DOFs

Mesh 3

    1024 x 128 x 512
    256 x 64 x 128
    128 x 64 x 64
1.9 billion DOFs

• Results presented were performed using “Kraken” [Cray XT5]

• Use Chebyshev + Jacobi smoothers
• Krylov coarse grid solver
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Rifting at Scale
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Mesh 1
256 x 32 x 128
30 million DOFs

Mesh 2
512 x 64 x 256
237 million DOFs

Mesh 3
1024 x 128 x 512
1.9 billion DOFs

x

z

y

cores Linear Picard

Mesh 1 512 3.57 3.88

Mesh 2 4096 8.48 5.90

Mesh 3 32786 7.86 7.12

cores Linear Picard

2048 2.04 2.22
16384 4.56 4.71

weak scaling

strong scaling

CPU time (sec) per iteration of Stokes problem, 
15-20 iterations required per Newton step
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Mesh 1
256 x 32 x 128
30 million DOFs

Mesh 2
512 x 64 x 256
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Mesh 3
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1.9 billion DOFs

x

z

y

cores Linear Picard

Mesh 1 512 3.57 3.88

Mesh 2 4096 8.48 5.90

Mesh 3 32786 7.86 7.12

cores Linear Picard

2048 2.04 2.22
16384 4.56 4.71

weak scaling

strong scaling

CPU time (sec) per iteration of Stokes problem, 
15-20 iterations required per Newton step

• Fixed three level hierarchy obviously prohibits possibility of perfect weak scaling, 
however 8 times larger problems requires < 2 times more CPU time. 

• Strong scaling is in the range of 20-43% efficiency. Strongly influenced by massively 
parallel, small sub-domain coarse grid solver.

•Performing non-linear, high resolution 3D thermo-mechanically 
coupled visco-plastic (non-trivial) simulations is still challenging.
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Conclusions and Outlook

1. Matrix Free (MF) SpMV kernels for Q2 elements reduce memory foot 
print, avoid the memory bandwidth bottleneck and thus scale well on 
parallel multi-core architectures

2. MF operators combined with Chebyshev/Jacobi can result in robust 
and efficient parallel MG smoothers for VV Stokes

3. Hybrid coarsening strategies can yield significant speed gains for 
“hard” problems

4. The distributed coarse grid solver is a scalability bottleneck. Further 
experimentation using (i) semi-redundant solves, (ii) AMG coarse grid 
solvers and (iii) Krylov methods with non-blocking global reductions 
needs to be conducted

5. Usage of hybrid MPI-OpenMP parallelism needs to be investigated

40
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Thanks for your 
attention... questions?

41

for (e=0; e<nel; e++) {
 
 ierr = StokesVelocity_GetElementLocalIndices(vel_el_lidx,(PetscInt*)&elnidx_u[nen_u*e]);CHKERRQ(ierr);
 ierr = StokesPressure_GetElementLocalIndices(p_el_lidx,(PetscInt*)&elnidx_p[nen_p*e]);CHKERRQ(ierr);
 
 ierr = VolumeQuadratureGetCellData_Stokes(volQ,all_gausspoints,e,&cell_gausspoints);CHKERRQ(ierr);
 
 ierr = DMDAGetElementCoordinatesQ2_3D(elcoords,(PetscInt*)&elnidx_u[nen_u*e],LA_gcoords);CHKERRQ(ierr);
 
 ierr = DMDAGetScalarElementField(elp,nen_p,(PetscInt*)&elnidx_p[nen_p*e],Xp);CHKERRQ(ierr);
 
 for (p=0; p<ngp; p++) {
  PetscScalar xip[] = { XI[p][0], XI[p][1], XI[p][2] };
  ConstructNi_pressure(xip,elcoords,NIp[p]);
 }
 P3D_evaluate_geometry_elementQ2(ngp,elcoords,GNI,detJ,dNudx,dNudy,dNudz);
 
 /* initialise element vector */
 PetscMemzero(Ye,sizeof(PetscScalar)*Q2_NODES_PER_EL_3D*3);
 for (p=0; p<ngp; p++) {
  fac = WEIGHT[p] * detJ[p];

  MatMultMF_Stokes_MixedFEM3d_A12(fac,0,0,0,0,elp,PETSC_NULL,dNudx[p],dNudy[p],dNudz[p],NIp[p],Ye);
 }
 ierr = DMDASetValuesLocalStencil_AddValues_Stokes_Velocity(Yu,vel_el_lidx,Ye);CHKERRQ(ierr);
}
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