Time-Implicit Hydrodynamics for Gravitational Flows

S. Van Criekingen ${ }^{1}$, E. Audit ${ }^{1}$, M. Szydlarski ${ }^{1}$, B. Braconnier ${ }^{2}$ and J. Vides ${ }^{1}$
${ }^{1}$ Maison de la Simulation, CEA Saclay, Gif-sur-Yvette, France
${ }^{2}$ IFP-Energie Nouvelles, Rueil-Malmaison, France

Efficient solution of large systems of non-linear PDEs in Science 7-9 Oct 2013 - Lyon, France
(1) Context and contribution
(2) More on (implicitly) solving the Euler equations
(3) More on TAPENADE
(4) Numerical results

- Machine and benchmark presentation
- Qualitative Implicit vs. Explicit results
- Quantitative results

Contents

(1) Context and contribution
(2) More on (implicitly) solving the Euler equations
(3) More on TAPEnade

4 Numerical results

- Machine and benchmark presentation
- Qualitative Implicit vs. Explicit results
- Quantitative results

Context

Flows with gravitation (self- or not) in astrophysics
\Rightarrow Euler-Poisson Equations

Context

Flows with gravitation (self- or not) in astrophysics
\Rightarrow Euler-Poisson Equations

Parallel 3-D code Heracles by Audit et al. (CEA-Saclay, DSM/Service d'astrophysique)

$\underline{\text { hydrodynamics }+ \text { MHD + radiative transfer + gravity + conduction }}$

Euler-Poisson Equations

$$
\begin{cases}\partial_{t} \rho+\nabla \cdot(\rho \mathbf{u}) & =0 \\ \partial_{t} \rho \mathbf{u}+\nabla \cdot(\rho \mathbf{u} \otimes \mathbf{u}+p) & =-\rho \nabla \phi \\ \partial_{t} \rho E+\nabla \cdot((\rho E+p) \mathbf{u}) & =-\rho \mathbf{u} \cdot \nabla \phi \\ \Delta \phi=4 \pi G \rho & \end{cases}
$$

where

- fluid density ρ
- fluid velocity $\mathbf{u} \in \mathbf{R}^{d}$
- fluid specific Energy E
- fluid pressure $p=p(\rho, \epsilon) \leftarrow$ equation of state with the specific internal energy $\epsilon=E-|\mathbf{u}|^{2} / 2$
- gravity potential ϕ (self or external)
- universal gravitational constant $G \approx 6.6710^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

Euler-Poisson Equations

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=-\mathbf{B}(\mathbf{W}) \nabla \phi \\
\Delta \phi=4 \pi G \rho
\end{array}\right.
$$

where

$$
\mathbf{W}=\left(\begin{array}{c}
\rho \\
\rho \mathbf{u} \\
\rho E
\end{array}\right) \quad \mathbf{F}(\mathbf{W})=\left(\begin{array}{c}
\rho \mathbf{u} \\
\rho \mathbf{u} \otimes \mathbf{u}+p \\
(\rho E+p) \mathbf{u}
\end{array}\right) \quad \mathbf{B}(\mathbf{W})=\rho\left(\begin{array}{c}
\mathbf{0}_{d}^{T} \\
\mathbf{e}_{1}^{T} \\
\vdots \\
\mathbf{e}_{d}^{T} \\
\mathbf{u}^{T}
\end{array}\right)
$$

with

- $\mathbf{0}_{d}$ the null vector in \mathbf{R}^{d}
- \mathbf{e}_{i} the $\mathrm{i}^{\text {th }}$ canonical vector in \mathbf{R}^{d}.

Euler-Poisson Equations

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=-\mathbf{B}(\mathbf{W}) \nabla \phi \tag{1}\\
\Delta \phi=4 \pi G \rho
\end{array}\right.
$$

Steps:

- With initial density ρ^{0} compute ϕ^{0} using Poisson Eq. (2)
- Solve Euler Eq. (1) using ϕ^{0}, yielding \mathbf{W}^{1} at first time step
- Extract ρ^{1} from \mathbf{W}^{1}, and compute ϕ^{1} using Poisson Eq. (2)
- And so on...

Euler-Poisson Equations

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=-\mathbf{B}(\mathbf{W}) \nabla \phi \tag{1}\\
\Delta \phi=4 \pi G \rho
\end{array}\right.
$$

Steps:

- With initial density ρ^{0} compute ϕ^{0} using Poisson Eq. (2)
- Solve Euler Eq. (1) using ϕ^{0}, yielding \mathbf{W}^{1} at first time step
- Extract ρ^{1} from \mathbf{W}^{1}, and compute ϕ^{1} using Poisson Eq. (2)
- And so on...

To solve (1): finite volumes + Godunov (with relaxation of p and ϕ) See J. Vides et al., Comm. in Comp. Physics, 15(1), 2014

Euler-Poisson Equations

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=-\mathbf{B}(\mathbf{W}) \nabla \phi \tag{1}\\
\Delta \phi=4 \pi G \rho
\end{array}\right.
$$

Steps:

- With initial density ρ^{0} compute ϕ^{0} using Poisson Eq. (2)
- Solve Euler Eq. (1) using ϕ^{0}, yielding \mathbf{W}^{1} at first time step
- Extract ρ^{1} from \mathbf{W}^{1}, and compute ϕ^{1} using Poisson Eq. (2)
- And so on...

To solve (1): finite volumes + Godunov (with relaxation of p and ϕ) See J. Vides et al., Comm. in Comp. Physics, 15(1), 2014

To solve (2): finite differences + CG

This contribution

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=-\mathbf{B}(\mathbf{W}) \nabla \phi \tag{1}\\
\Delta \phi=4 \pi G \rho
\end{array}\right.
$$

This contribution: implicit version of the explicit one, by implicitly solving the Euler equations (1)

This contribution

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=-\mathbf{B}(\mathbf{W}) \nabla \phi \tag{1}\\
\Delta \phi=4 \pi G \rho
\end{array}\right.
$$

This contribution: implicit version of the explicit one, by implicitly solving the Euler equations (1)

- Jacobian computed symbolically using the Automatic Differentiation tool Tapenade (INRIA)

This contribution

$$
\left\{\begin{array}{l}
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=-\mathbf{B}(\mathbf{W}) \nabla \phi \tag{1}\\
\Delta \phi=4 \pi G \rho
\end{array}\right.
$$

This contribution: implicit version of the explicit one, by implicitly solving the Euler equations (1)

- Jacobian computed symbolically using the Automatic Differentiation tool Tapenade (INRIA)
- Coupling to PETSc to solve the Jacobian system (BICGSTAB and GMRES + preconditioning)

Contents

(1) Context and contribution

(2) More on (implicitly) solving the Euler equations
(3) More on TAPENADE

4 Numerical results

- Machine and benchmark presentation
- Qualitative Implicit vs. Explicit results
- Quantitative results

More on Solving Euler Equations (1/4)

1-D homogeneous case:

$$
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=0
$$

$\{$ Finite volumes (spatial grid index i)
Explicit in time (time step index n)

$$
\Rightarrow \quad \mathbf{W}_{i}^{n+1}=\mathbf{W}_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathbf{F}_{i+\frac{1}{2}}^{n}-\mathbf{F}_{i-\frac{1}{2}}^{n}\right)
$$

where the numerical flux $\mathbf{F}_{i \pm \frac{1}{2}}^{n}$ are obtained by Godunov's method,
i.e., by solving Riemann problems: $\mathbf{F}_{i \pm \frac{1}{2}}^{n}\left(\mathbf{W}_{i}^{n}, \mathbf{W}_{i \pm 1}^{n}\right)$.

More on Solving Euler Equations (1/4)

1-D homogeneous case:

$$
\partial_{t} \mathbf{W}+\nabla \cdot \mathbf{F}(\mathbf{W})=0
$$

$\{$ Finite volumes (spatial grid index i)
Explicit in time (time step index n)

$$
\Rightarrow \quad \mathbf{W}_{i}^{n+1}=\mathbf{W}_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathbf{F}_{i+\frac{1}{2}}^{n+1}-\mathbf{F}_{i-\frac{1}{2}}^{n+1}\right)
$$

where the numerical flux $\mathbf{F}_{i \pm \frac{1}{2}}^{n}$ are obtained by Godunov's method,
i.e., by solving Riemann problems: $\mathbf{F}_{i \pm \frac{1}{2}}^{n}\left(\mathbf{W}_{i}^{n}, \mathbf{W}_{i \pm 1}^{n}\right)$.

To avoid restrictions on Δt from CFL condition : implicit method.

More on Implicit Solving of Euler Equations (2/4)

$$
\mathbf{W}_{i}^{n+1}=\mathbf{W}_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathbf{F}_{i+\frac{1}{2}}^{n+1}-\mathbf{F}_{i-\frac{1}{2}}^{n+1}\right)
$$

Define

$$
\mathscr{F}\left(\mathbf{W}_{i}^{n+1}, \mathbf{W}_{i \pm 1}^{n+1}\right)=\frac{1}{\Delta x}\left(\mathbf{F}_{i+\frac{1}{2}}^{n+1}-\mathbf{F}_{i-\frac{1}{2}}^{n+1}\right)
$$

so that

$$
\frac{\mathbf{W}_{i}^{n+1}-\mathbf{W}_{i}^{n}}{\Delta t}=-\mathscr{F}\left(\mathbf{W}_{i}^{n+1}, \mathbf{W}_{i \pm 1}^{n+1}\right)
$$

More on Implicit Solving of Euler Equations (2/4)

$$
\mathbf{W}_{i}^{n+1}=\mathbf{W}_{i}^{n}-\frac{\Delta t}{\Delta x}\left(\mathbf{F}_{i+\frac{1}{2}}^{n+1}-\mathbf{F}_{i-\frac{1}{2}}^{n+1}\right)
$$

Define

$$
\mathscr{F}\left(\mathbf{W}_{i}^{n+1}, \mathbf{W}_{i \pm 1}^{n+1}\right)=\frac{1}{\Delta x}\left(\mathbf{F}_{i+\frac{1}{2}}^{n+1}-\mathbf{F}_{i-\frac{1}{2}}^{n+1}\right)
$$

so that

$$
\frac{\mathbf{W}_{i}^{n+1}-\mathbf{W}_{i}^{n}}{\Delta t}=-\mathscr{F}\left(\mathbf{W}_{i}^{n+1}, \mathbf{W}_{i \pm 1}^{n+1}\right)
$$

For the whole mesh:

$$
\frac{\mathbf{W}^{n+1}-\mathbf{W}^{n}}{\Delta t}=-\mathscr{F}\left(\mathbf{W}^{n+1}\right)
$$

More on Implicit Solving of Euler Equations (3/4)

$$
\begin{aligned}
\frac{\mathbf{W}^{n+1}-\mathbf{W}^{n}}{\Delta t} & =-\mathscr{F}\left(\mathbf{W}^{n+1}\right) \\
& \approx-\mathscr{F}\left(\mathbf{W}^{n}\right)-\frac{\partial \mathscr{F}}{\partial \mathbf{W}}\left(\mathbf{W}^{n+1}-\mathbf{W}^{n}\right)
\end{aligned}
$$

linearly implicit

More on Implicit Solving of Euler Equations (3/4)

$$
\begin{aligned}
\frac{\mathbf{W}^{n+1}-\mathbf{W}^{n}}{\Delta t} & =-\mathscr{F}\left(\mathbf{W}^{n+1}\right) \\
& \approx-\mathscr{F}\left(\mathbf{W}^{n}\right)-\frac{\partial \mathscr{F}}{\partial \mathbf{W}}\left(\mathbf{W}^{n+1}-\mathbf{W}^{n}\right)
\end{aligned}
$$

linearly implicit

$$
\Rightarrow \underbrace{\left[\frac{\mathscr{I}}{\Delta t}+\frac{\partial \mathscr{F}}{\partial \mathbf{W}}\right]}_{\text {Jacobian } \mathscr{J}}\left(\mathbf{W}^{n+1}-\mathbf{W}^{n}\right)=-\mathscr{F}\left(\mathbf{W}^{n}\right)
$$

More on Implicit Solving of Euler Equations (4/4)

At each time step, Jacobian system solved using PETSC:

$$
\mathscr{J}\left(\mathbf{W}^{n+1}-\mathbf{W}^{n}\right)=-\mathscr{F}\left(\mathbf{W}^{n}\right)
$$

Jacobian \mathscr{J} :

- not symmetric, but block symmetric.
- computed symbolically by TAPENADE .

Contents

(1) Context and contribution

(2) More on (implicitly) solving the Euler equations
(3) More on Tapenade
(4) Numerical results

- Machine and benchmark presentation
- Qualitative Implicit vs. Explicit results
- Quantitative results

TAPENADE example (1/3)

Input function:

```
| subroutine ff(X,f)
    implicit none
    real :: x,f
    f = x* cos(abs(x))
    return
end subroutine ff
```


TAPENADE example (2/3)

Input function re-written by TAPENADE:

```
! Generated by TAPENADE (INRIA, Tropics team)
! Tapenade 3.7 (r4888) - 28 May 2013 10:47
!
SUBROUTINE FF(x, f)
    IMPLICIT NONE
    REAL :: x, f
    INTRINSIC COS
    INTRINSIC ABS
    REAL : : abs0
    IF (x .GE. 0.) THEN
        abs0=x
    ELSE
        abs0 = -x
    END IF
    f=x*COS(abs0)
    RETURN
END SUBROUTINE FF
```


TAPENADE example (3/3)

Output function by TAPENADE :

```
! Generated by TAPENADE (INRIA, Tropics team)
! Tapenade 3.7 (r4888) - 28 May 2013 10:47
!
! Differentiation of ff in forward (tangent) mode:
! variations of useful results: f
! with respect to varying inputs: x
! RW status of diff variables: f:out x:in
SUBROUTINE FF_D(x, xd, f, fd)
    IMPLICIT NONE
    REAL :: x, f
    REAL :: xd, fd
    INTRINSIC COS
    INTRINSIC ABS
    REAL :: abs0d
    REAL :: abs0
    IF (x .GE. 0.) THEN
        abs0d= xd
        abs0 = x
    ELSE
        abs0d = -xd
        abs0 = -x
    END IF
    fd= xd*COS(abs0) - x*abs0d*SIN(abs0)
    f=x*COS(abs0)
    RETURN
END SUBROUTINE FF_D
```


Contents

(1) Context and contribution
(2) More on (implicitly) solving the Euler equations
(3) More on Tapenade
(4) Numerical results

- Machine and benchmark presentation
- Qualitative Implicit vs. Explicit results
- Quantitative results

Heracles code ported on

- Poincaré at Maison de la Simulation (1472 CPU cores)
- Jade at CINES (75 000 scalar hours from GENCI) Calculations (2-D) up to 4096 CPU cores
- Curie at TGCC

Calculations (3-D) up to 8192 CPU cores

Heracles code ported on

- Poincaré at Maison de la Simulation (1472 CPU cores)
- Jade at CINES (75 000 scalar hours from GENCI) Calculations (2-D) up to 4096 CPU cores
- Curie at TGCC

Calculations (3-D) up to 8192 CPU cores

Test case: Rayleigh-Taylor instability

Rayleigh-Taylor Instability ($\mathrm{T}=0.0 \mathrm{~s}$.)

Rayleigh-Taylor Instability ($\mathrm{T}=1.6 \mathrm{~s}$.)

Rayleigh-Taylor Instability ($\mathrm{T}=2.4 \mathrm{~s}$.)

Machine and benchmark presentation Qualitative Implicit vs. Explicit results Quantitative results

Rayleigh-Taylor Instability ($\mathrm{T}=3.2 \mathrm{~s}$.)

Rayleigh-Taylor Instability ($\mathrm{T}=4.0 \mathrm{~s}$.)

Rayleigh-Taylor Instability ($\mathrm{T}=4.8 \mathrm{~s}$.)

Machine and benchmark presentation Qualitative Implicit vs. Explicit results Quantitative results

Rayleigh-Taylor Instability ($\mathrm{T}=5.6 \mathrm{~s}$.)

Machine and benchmark presentation Qualitative Implicit vs. Explicit results Quantitative results

Rayleigh-Taylor Instability ($\mathrm{T}=6.4 \mathrm{~s}$.)

Machine and benchmark presentation Qualitative Implicit vs. Explicit results
Quantitative results

Rayleigh-Taylor Instability ($\mathrm{T}=7.2 \mathrm{~s}$.)

Machine and benchmark presentation Qualitative Implicit vs. Explicit results
Quantitative results

Rayleigh-Taylor Instability ($\mathrm{T}=8.0 \mathrm{~s}$.)

Contents

(1) Context and contribution
(2) More on (implicitly) solving the Euler equations
(3) More on Tapenade
(4) Numerical results

- Machine and benchmark presentation
- Qualitative Implicit vs. Explicit results
- Quantitative results

Qualitative numerical results at $t=4 \mathrm{~s}$

EXPLICIT

IMPLICIT

1024×256 mesh

Time step: $\Delta t_{\text {impl }} \approx \Delta t_{\text {expl }} \times 60$
Total computing time: $T_{\text {impl }} \approx T_{\text {expl }} / 3$

Qualitative numerical results at $t=7 \mathrm{~s}$

EXPLICIT

IMPLICIT

1024×256 mesh

2048×512 mesh

4096×1024 mesh

Time step: $\Delta t_{\text {impl }} \approx \Delta t_{\text {expl }} \times 60$
Total computing time: $T_{\text {impl }} \approx T_{\text {expl }} / 3$

Qualitative discussion

- Implicit more diffusive than explicit
- Discrepancies grow along with time evolution
- Fair quantitative comparison hardly possible without clear target result(s)

Contents

(1) Context and contribution
(2) More on (implicitly) solving the Euler equations
(3) More on Tapenade
(4) Numerical results

- Machine and benchmark presentation
- Qualitative Implicit vs. Explicit results
- Quantitative results

BiCGSTAB vs. GMRES ($256 \times 256 \times 512$ mesh ; 128 CPU)

Comparing preconditioners ($256 \times 256 \times 512$ mesh ; 128 CPU)

Comparing preconditioners ($256 \times 256 \times 512$ mesh ; 128 CPU)

Comparing preconditioners ($256 \times 256 \times 512$ mesh ; 128 CPU)

Time step: $\Delta t_{\text {impl }} \approx \Delta t_{\text {expl }} \times 60$
Total computing time: $T_{\text {impl }} \approx T_{\text {expl }} / 3$

Strong scaling ($256 \times 256 \times 512$ mesh ; up to 8192 CPU)

Not enough memory for nMPI=[2,16]

Strong scaling ($256 \times 256 \times 512$ mesh ; up to 8192 CPU)

Not enough memory for nMPI=[2,16]
!!! Explicit × 10 !!!

Weak scaling ($64 \times 64 \times 64$ per nMPI $)$

Quantitative discussion

- Memory footprint 3 to 4 times larger in implicit.
- So far no better preconditioning than "simple" BJ+ILU(0) or BJ+SOR .
- Scaling difficult to achieve above 1024 cores.

Conclusions and Perspectives

- Implicit formulation using "automated" Jacobian: feasibility study OK
- Fair implict vs. explicit comparison requires target result.
- Test case with "hydro + self-gravity" under investigation.

Contact

serge.van-criekingen@cea.fr

 edouard.audit@cea.fr
Choice of Δt

$$
\begin{align*}
\text { cfl_limit }= & \min _{(i, j)}\left(\frac{\Delta x}{c_{s}+\left|u_{x}\right|_{(i, j)}}+\frac{\Delta y}{c_{s}+\left|u_{y}\right|_{(i, j)}}\right) \\
\Delta t_{\text {expl }} & =\frac{1}{2} \times \text { cfl_limit } \tag{1}\\
\Delta t_{\mathrm{impl}} & =\min \left(K_{\rho}, K_{E}\right) \times \text { cfl_limit } \tag{2}
\end{align*}
$$

where (similarly for E):

$$
K_{\rho}=\frac{\delta_{d t} \delta_{r e l}}{\max \left(\delta_{d t} \max _{(i, j)} \left\lvert\, \frac{\Delta \rho_{(i, j)}}{0\left(, \delta_{r e l}\right)}\right.\right.} \quad \Delta \rho_{(i, j)}=\rho_{(i, j)}^{n}-\rho_{(i, j)}^{n-1}
$$

$\Delta \rho$ small: $\delta_{d t}=1.05=$ time step length increase.
$\Delta \rho$ large: $\delta_{\text {rel }}=0.05=$ relative variation of ρ

