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Flows in stellar interiors
Important physical characteristics guiding modelling

• Large stratification: density decreases by orders of magnitude throughout the interior

• Low-Mach flow in the interior (CZ: 10-4-10-3, RZ much smaller), but transonic (~1) 
transition toward the surface

• Extreme parameter regime: e.g. Ra ~ 1015, Pr ≾ 10-6, Re = LV/ν > 1010

• Highly turbulent flow

! We will not be able to model all scales of the flow
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Physical model
Compressible hydrodynamics

• We discard low-mach approaches (e.g. 
anelastic approximation)

" Modelling low-to-moderate Mach number flows 
in consistent background stratification

• Gas dynamics equations

• Thermal diffusion (τ≫1) and external gravity

• General equation-of-state (EOS)

• We do not consider (yet):

• Rotation, multi-fluid, magnetic field

• In practice: no explicit viscosity !

• Implicit Large Eddy Simulation: conservative, 
monotonicity-preserving schemes mimic a 
physical viscosity

χ =
4acT 3

3κρ
Photons conductivity:

EOS: P, T = f(ρ, e)

Physical model

∂tρ = −�∇ · (ρ�u)

∂t(ρe) = −�∇ · (ρe�u)− p�∇ · �u+ qvisc + �∇ · (χ�∇T )

∂t(ρ�u) = −�∇ · (ρ�u⊗ �u)− �∇p+ ρ�g + �∇ · ¯̄τvisc



Spatial discretization

• Geometry: 

• Spherical coordinates (wedges) in 2D/3D

• Spatial method

• Finite volumes on a staggered grid

• Advection: upwind method 
“High-order donor cell” (2d order in space)

• Diffusion: 2d order central differences
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• Semi-discretised system:

• We have:

• Stiff sound waves:               

• Stiff diffusion:                                can become very large

" Severely restrict the time step when using explicit methods (CFL condition)

" Motivation for a fully implicit method

• Time step choice is based on accuracy considerations !

" MUSIC: MUltidimensional Stellar Implicit Code
(see Viallet, Baraffe, Walder, A&A, 2011, 2013)

χr =
kr
ρcp

=
4acT 3

3κcpρ2

Time integration of the equations
Difficulties

τsound � τphys

dU

dt
= R(U)

unconditionally stable (A-stability) un+1 = un +∆tf(un+1)
du(t)

dt
= f(u(t))

du(t)

dt
= f(u(t)) un+1 = un +∆tf(un)∆t



Outline

• Introduction

• Newton-Krylov solvers

• Conclusion



• Fully-implicit scheme: 2d order Crank-Nicholson

• Difficulty: need to solve a large system of nonlinear 
equations F(Un+1)=0

• 2D: 5122 ! N ~ 106,  3D: 2563 ! N ~ 84x106

• Challenge: achieve efficiency and scalability

• Strategy: Newton-Raphson method

• Initial guess: 

• Linearization:                                        with                             

• Update: 

• Convergence:

dU

dt
= R(U)

F (Un+1) = Un+1 − Un − ∆t

2

�
R(Un+1) +R(Un)

�
= 0

Implicit integration using Crank-Nicholson

U (0) = Un

U (k+1) = U (k) + δU (k)

max
δU (k)

U (k)
< � ⇒ Un+1 = U (k+1)

J (k)δU (k) = −F (U (k)) J (k) ≈ ∂F

∂U
(U (k))

MUSIC
Implicit strategy: Newton-Krylov method

Most expensive step !
1. Build matrix J (optional !)
2. Solve sparse linear system Ax=b



MUSIC
Newton-Krylov method

• “Inexact strategy” for                                  which is solved 
with GMRES iterations (Generalized Minimum Residual 
Method)

• At iteration p, construct an approximation of the solution in the 
Krylov space

• Accuracy can be tuned: reduce                       by a factor η
(typically loose tolerance η = 10-1 - 10-2)

• Hope: a solution can be found for p≪N (e.g. p ≲ 30-40)

• Stiffness spoils the convergence of the Krylov solver

• Preconditioning is necessary: e.g. incomplete LU 
factorization of J (note: requires the computation of the matrix 
J)

J (k)δU (k) = −F (U (k))

Kp = span(F, JF, J2F, . . . , Jp−1F )

∂Fi

∂Uj
≈ F (Uj + ∆Uj)− F (Uj)

∆Uj

Finite differences for J

(JM−1)MδU = −F

Preconditioning

||JδU + F ||2

η = 10−4
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• Bottlenecks for fully-implicit 3D computations: 

1. Computation/storage of the Jacobian matrix
2D: ~ 50 evaluations of F, 3D: ~ 100 evaluations of F

2. Incomplete LU factorization: inefficiency + cost

1. Use Jacobian-free Newton-Krylov methods
(see review by Knoll & Keyes, JCP, 2004)

• Krylov methods do not need the Jacobian matrix, only its 
action on a vector

2. Physics-based preconditioning
(see e.g. Knoll et al, JSC, 25, 112, 2005, Park et al, JCP, 228, 2009)

• Origin of the problem: change of the mathematical character 
of acoustic fluctuations at large wave-CFL numbers

MUSIC
Fully implicit 3D computations

Jv =
F (u+ δv)− F (u)

δ

Jacobian-free approach



• Semi-implicit scheme for hydrodynamics

• Target the terms inducing sound-waves

• Solve equations for V = (p,e,u)

• Use implicit Euler for specific terms and explicit Euler for 
advection

• Use Picard linearization for implicit terms

• Approximate

• Semi-implicit scheme is linear

• Strategy: solve parabolic equation for δP, then get δe and 
δu

• Associated matrix with the “δ-form” of the scheme

MUSIC - 3D strategy
Jacobian-Free Newton-Krylov with physics-based preconditioning
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• Test of the semi-implicit scheme

• Advection of an isotropic vortex in 2D

• Scheme is not prone to a wave-CFL condition

• But advection limits the time step (CFLadv ≲ 0.2)

MUSIC - 3D strategy
Jacobian-Free Newton-Krylov with physics-based preconditioning

10−2 10−1 100 101
CFLadv

10−6

10−5

10−4

10−3

10−2

10−1

N
or
m
s
of

th
e
er
ro
r

∝ ∆t

T∞ = 1010

L1-norm

L2-norm

L∞-norm

103 104 105 106
CFLhydro

10−2 10−1 100 101
CFLadv

10−6

10−5

10−4

10−3

10−2

10−1

N
or
m
s
of

th
e
er
ro
r

∝ ∆t

T∞ = 1

L1-norm

L2-norm

L∞-norm

10−1 100 101
CFLhydro

Ms = 0.1 Ms = 10−6

CFLhydro = max
� |u|+ cs

∆x

�
∆t

CFLadv = max
� |u|
∆x

�
∆t



• Three sets of variables:

• “Conservative” variables U = (ρ, ρe, ρu)

• “Independent” variables X = (ρ, e, u)

• “Primitive” variables V = (p, e, u)

• Right-Preconditioning of JδX = - FU(X) with matrix M

• Search-space:

• GMRES algorithm: for a given Krylov vector w, compute
(JM-1)w

1.  Solve Mv = w for v (Preconditioning step)

2.  Compute Jv using a Jacobian-free approach

• PBP: interpret Mv=w as a SI step in δ-form

MUSIC - 3D strategy
Jacobian-Free Newton-Krylov with physics-based preconditioning

�
JM−1

�
δX � = −FU (X)

MδX = δX �

SI scheme
J̃V δV = −F̃V

F̃V =
∂V

∂U
FUδX =

∂X

∂V
δV

Jacobian

JδX = −FU

Krylov Space

FU

Kp = span(F, (JM−1)F, . . . , (JM−1)p−1F )

wv



• Preliminary results on a 3D test: Taylor-Green vortex

• Number iterations required to decrease the linear residual 
by a factor of η = 10-4

MUSIC - 3D strategy
Jacobian-Free Newton-Krylov with physics-based preconditioning
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• Jacobian-Free Newton-Krylov method for hydrodynamics

• Stiffness spoils the convergence of the Krylov solver

• The preconditioner is the most important ingredient !

• If you know any linear method that yields an approximate solution of your (nonlinear) 
problem, embedding it within a JFNK method will give you the accuracy

• Unlike algebraic preconditioning, physics-based preconditioning cures the 
stiffness at the level of the physical model

• Pro: obtain maximum efficiency

• Contra: problem dependent

• Free lunch: semi-implicit schemes also provide a better initial guess for NR

• Additional physics can be included in the preconditioner

• Thermal diffusion: results in two coupled parabolic equations for p and e

Conclusion
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