

MAX-PLANCK-INSTITUT FÜR ASTROPHYSIK

Physics-based preconditioning of sound waves A Jacobian-free Newton-Krylov method for implicit multi-D hydrodynamics

Maxime Viallet

Max-Planck-Institute für Astrophysik, Garching

Workshop on Newton-Krylov methods Lyon, October 6th, 2013

Outline

Introduction

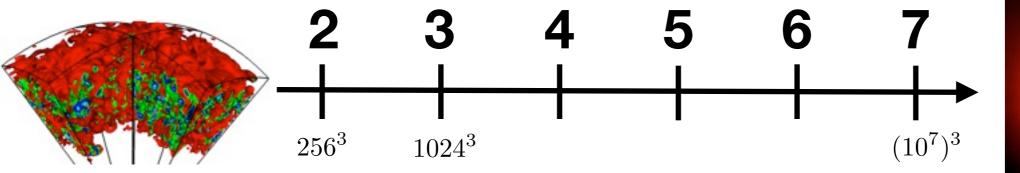
- Newton-Krylov solvers
- Conclusion

Flows in stellar interiors

Important physical characteristics guiding modelling

- Large stratification: density decreases by orders of magnitude throughout the interior
- Low-Mach flow in the interior (CZ: 10⁻⁴-10⁻³, RZ much smaller), but transonic (~1) transition toward the surface
- Extreme parameter regime: e.g. Ra ~ 10^{15} , Pr $\leq 10^{-6}$, Re = $LV/v > 10^{10}$
- Highly turbulent flow $\longrightarrow \frac{R}{\eta} \sim \operatorname{Re}^{\frac{3}{4}} \sim 10^{7.5}$

→ We will not be able to model all scales of the flow



Credit: SOHO

Physical model

Compressible hydrodynamics

- We discard low-mach approaches (e.g. anelastic approximation)
 - Modelling low-to-moderate Mach number flows in consistent background stratification
- Gas dynamics equations
 - Thermal diffusion ($\tau \gg 1$) and external gravity
 - General equation-of-state (EOS)
- We do not consider (yet):
 - Rotation, multi-fluid, magnetic field
- In practice: no explicit viscosity !
 - Implicit Large Eddy Simulation: conservative, monotonicity-preserving schemes mimic a physical viscosity

Physical model

$$\begin{aligned} \partial_t \rho &= -\vec{\nabla} \cdot (\rho \vec{u}) \\ \partial_t (\rho e) &= -\vec{\nabla} \cdot (\rho e \vec{u}) - p \vec{\nabla} \cdot \vec{u} + q_{\text{visc}} + \vec{\nabla} \cdot (\chi \vec{\nabla} T) \\ \partial_t (\rho \vec{u}) &= -\vec{\nabla} \cdot (\rho \vec{u} \otimes \vec{u}) - \vec{\nabla} p + \rho \vec{g} + \vec{\nabla} \cdot \bar{\bar{\tau}}_{\text{visc}} \end{aligned}$$

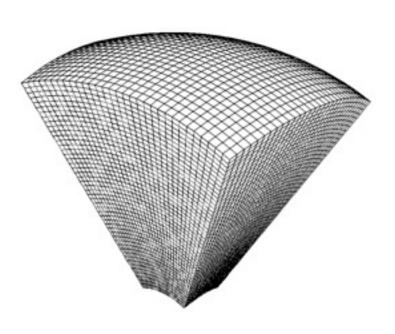
Photons conductivity:
$$\chi = \frac{4acT^3}{3\kappa\rho}$$

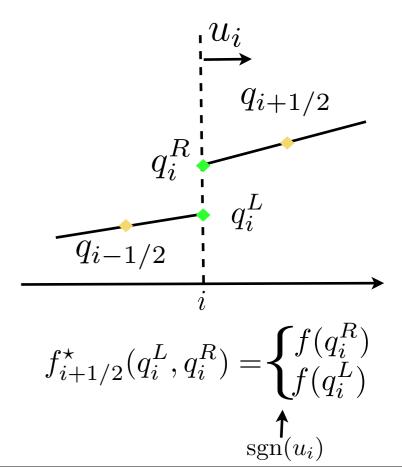
EOS:
$$P, T = f(\rho, e)$$

Spatial discretization

- Geometry:
 - Spherical coordinates (wedges) in 2D/3D
- Spatial method
 - Finite volumes on a staggered grid
 - Advection: upwind method "High-order donor cell" (2^d order in space)
 - Diffusion: 2^d order central differences

→o ↑	→O ↑	→o ↑
→ O	→o	→o ↑
→o	→O	→o





Time integration of the equations Difficulties

- Semi-discretised system: $\frac{dU}{dt} = R(U)$
- We have:
 - Stiff sound waves: $au_{
 m sound} \ll au_{
 m phys}$
 - Stiff diffusion: $\chi_r = \frac{k_r}{\rho c_p} = \frac{4acT^3}{3\kappa c_p \rho^2}$ can become very large
 - Severely restrict the time step when using explicit methods (CFL condition) $\frac{du(t)}{dt} = f(u(t)) \longrightarrow u^{n+1} = u^n + \Delta t f(u^n)$
 - Motivation for a fully implicit method

 $\frac{du(t)}{dt} = f(u(t)) \longrightarrow u^{n+1} = u^n + \Delta t f(u^{n+1}) \text{ unconditionally stable (A-stability)}$

• Time step choice is based on accuracy considerations !

→ MUSIC: MUltidimensional Stellar Implicit Code (see Viallet, Baraffe, Walder, A&A, 2011, 2013)

Outline

- Introduction
- Newton-Krylov solvers
- Conclusion

MUSIC

Implicit strategy: Newton-Krylov method

- Fully-implicit scheme: 2^d order Crank-Nicholson
 - **Difficulty**: need to solve a large system of nonlinear equations $F(U^{n+1})=0$
 - 2D: 512² → *N* ~ 10⁶, 3D: 256³ → *N* ~ 84x10⁶
 - **Challenge:** achieve *efficiency* and *scalability*
- Strategy: Newton-Raphson method
 - Initial guess: $U^{(0)} = U^n$

• Linearization:
$$J^{(k)}\delta U^{(k)} = -F(U^{(k)})$$
 with $J^{(k)} \approx \frac{\partial F}{\partial U}(U^{(k)})$

• Update:
$$U^{(k+1)} = U^{(k)} + \delta U^{(k)}$$

- Convergence: $\max \frac{\delta U^{(k)}}{U^{(k)}} < \epsilon \Rightarrow U^{n+1} = U^{(k+1)}$

Implicit integration using Crank-Nicholson

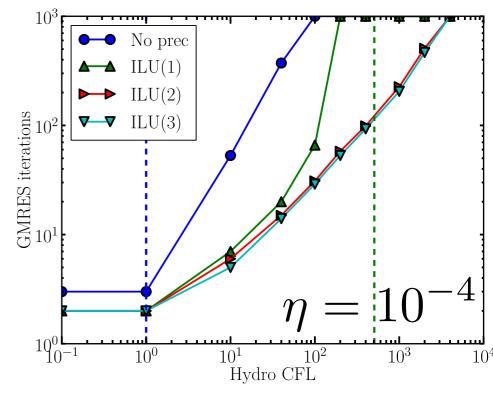
$$\frac{dU}{dt} = R(U) \longrightarrow$$
$$F(U^{n+1}) = U^{n+1} - U^n - \frac{\Delta t}{2} \left(R(U^{n+1}) + R(U^n) \right) = 0$$

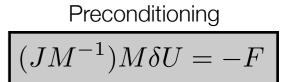
Most expensive step ! 1. Build matrix J (optional !) 2. Solve sparse linear system Ax=b

MUSIC

Newton-Krylov method

- "Inexact strategy" for $J^{(k)}\delta U^{(k)} = -F(U^{(k)})$ which is solved with GMRES iterations (Generalized Minimum Residual Method)
 - At iteration *p*, construct an approximation of the solution in the Krylov space $\mathcal{K}_p = \operatorname{span}(F, JF, J^2F, \dots, J^{p-1}F)$
 - Accuracy can be tuned: reduce $||J\delta U + F||_2$ by a factor η (typically loose tolerance $\eta = 10^{-1} 10^{-2}$)
- Hope: a solution can be found for $p \ll N$ (e.g. $p \lesssim 30-40$)
 - Stiffness spoils the convergence of the Krylov solver
 - Preconditioning is necessary: e.g. incomplete LU factorization of J (note: requires the computation of the matrix J)





Finite differences for J $\frac{\partial F_i}{\partial F_i} \approx \frac{F(U_j + \Delta U_j) - F(U_j)}{1 - F(U_j)}$ ∂U_i ΔU_i

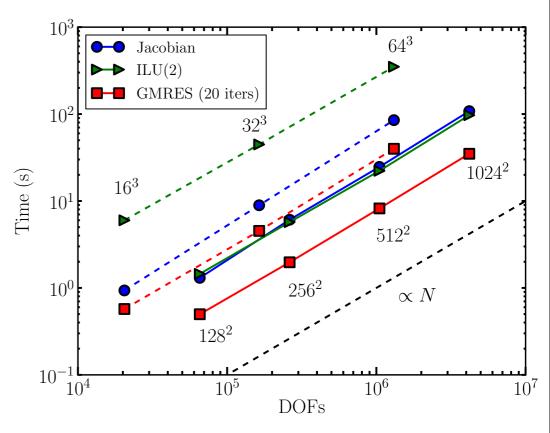
MUSIC

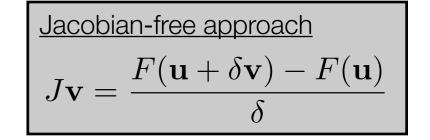
Fully implicit 3D computations

- Bottlenecks for fully-implicit 3D computations:
 - 1. Computation/storage of the Jacobian matrix 2D: ~ 50 evaluations of F, 3D: ~ 100 evaluations of F

2. Incomplete LU factorization: inefficiency + cost

- 1. Use Jacobian-free Newton-Krylov methods (see review by Knoll & Keyes, JCP, 2004)
 - Krylov methods do not need the Jacobian matrix, only its action on a vector
- 2. Physics-based preconditioning (see e.g. Knoll et al, JSC, 25, 112, 2005, Park et al, JCP, 228, 2009)
 - Origin of the problem: change of the mathematical character of acoustic fluctuations at large wave-CFL numbers





- Semi-implicit scheme for hydrodynamics
 - Target the terms inducing sound-waves
- Solve equations for V = (p,e,u)
 - Use implicit Euler for specific terms and explicit Euler for advection
 - Use Picard linearization for implicit terms

• Approximate
$$u^{n+1} = u^n - \Delta t \frac{1}{\rho^n} \partial_x p^{n+1}$$

- Semi-implicit scheme is linear
 - Strategy: solve parabolic equation for δP, then get δe and δu
 - Associated matrix with the " δ -form" of the scheme

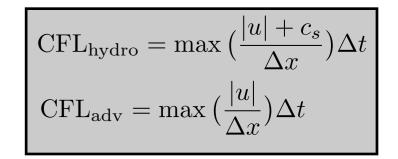
"δ-form"
$$\tilde{J}_V \delta V = -\tilde{F}_V$$

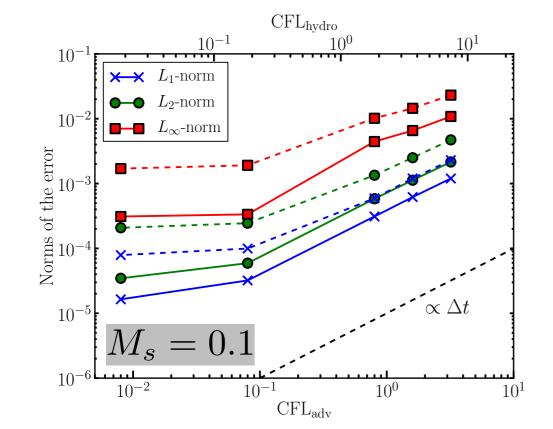
$$\partial_t p + u \partial_x p = -\Gamma_1 p \partial_x u$$
$$\partial_t e + u \partial_x e = -\frac{p}{\rho} \partial_x u$$
$$\partial_t u + u \partial_x u = -\frac{1}{\rho} \partial_x p$$

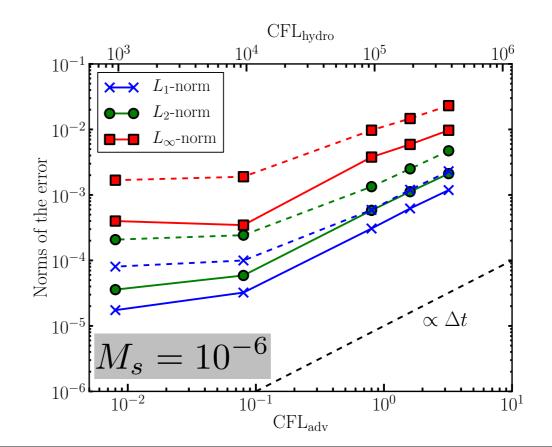
$$\begin{aligned} \frac{\delta p}{\Delta t} + \Gamma_1 p^n \partial_x u^{n+1} &= -u \partial_x p \Big|^n \\ \frac{\delta e}{\Delta t} + \frac{p^n}{\rho^n} \partial_x u^{n+1} &= -u \partial_x e \Big|^n \\ \frac{\delta u}{\Delta t} + \frac{1}{\rho^n} \partial_x p^{n+1} &= -u \partial_x u \Big|^n \end{aligned}$$

$$\begin{aligned} \frac{\delta p}{\Delta t} &- a^2 \Delta t \partial_x^2 p^{n+1} = - u \partial_x p \Big|^n - \Gamma_1 p^n \partial_x u^n \\ \frac{\delta e}{\Delta t} &- \Delta t \frac{p^n}{(\rho^n)^2} \partial_x^2 p^{n+1} = - u \partial_x e \Big|^n - \frac{p^n}{\rho^n} \partial_x u^n \\ &\frac{\delta u}{\Delta t} + \frac{1}{\rho^n} \partial_x p^{n+1} = - u \partial_x u \Big|^n \end{aligned}$$

- Test of the semi-implicit scheme
 - Advection of an isotropic vortex in 2D
- Scheme is not prone to a wave-CFL condition
 - But advection limits the time step (CFL_{adv} ≤ 0.2)

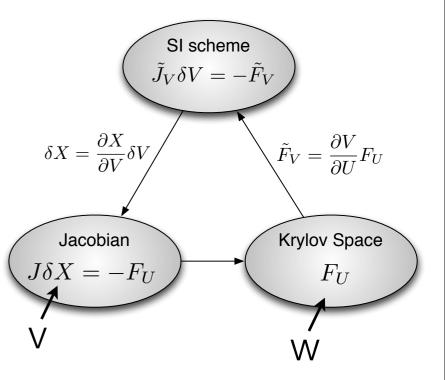




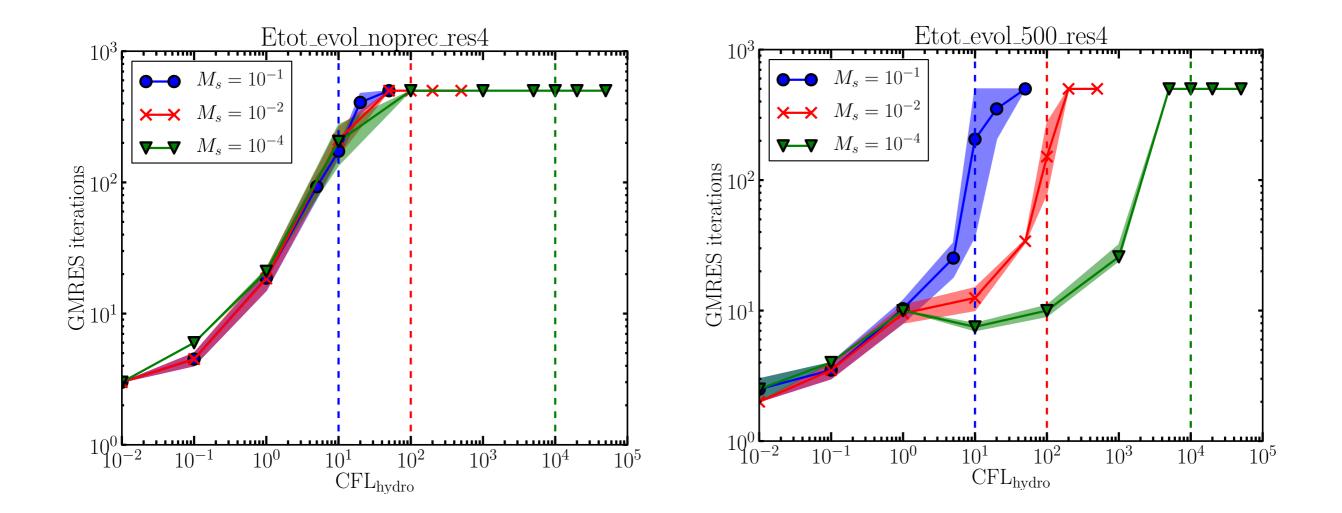


- Three sets of variables:
 - "Conservative" variables $U = (\rho, \rho e, \rho u)$
 - "Independent" variables $X = (\rho, e, u)$
 - "Primitive" variables *V* = (*p*, *e*, *u*)
- Right-Preconditioning of $J\delta X = -F_U(X)$ with matrix M
 - Search-space: $\mathcal{K}_p = \operatorname{span}(F, (JM^{-1})F, \dots, (JM^{-1})^{p-1}F)$
- GMRES algorithm: for a given Krylov vector w, compute (JM⁻¹)w
 - 1. Solve *Mv* = *w* for *v* (**Preconditioning step**)
 - 2. Compute Jv using a Jacobian-free approach
- PBP: interpret Mv=w as a SI step in δ -form

$$(JM^{-1})\delta X' = -F_U(X)$$
$$M\delta X = \delta X'$$



- Preliminary results on a 3D test: Taylor-Green vortex
 - Number iterations required to decrease the linear residual by a factor of η = 10^{-4}



Outline

- Introduction
- Newton-Krylov solvers
- Conclusion

Conclusion

- Jacobian-Free Newton-Krylov method for hydrodynamics
 - Stiffness spoils the convergence of the Krylov solver
- The preconditioner is the most important ingredient !
 - If you know any linear method that yields an approximate solution of your (nonlinear) problem, embedding it within a JFNK method will give you the accuracy
- Unlike algebraic preconditioning, physics-based preconditioning cures the stiffness at the level of the physical model
 - Pro: obtain maximum efficiency
 - Contra: problem dependent
- Free lunch: semi-implicit schemes also provide a better initial guess for NR
- Additional physics can be included in the preconditioner
 - Thermal diffusion: results in two coupled parabolic equations for *p* and *e*

END