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Scalable multi-level preconditioners 
for variable viscosity Stokes flow problems 

arising from geodynamics
Dave May 1

1 Institute of Geophysics, ETH Zurich, Switzerland
dave.may@erdw.ethz.ch

Here I describe a numerical method suitable for studying non-linear, large deformation processes in  
crustal and lithospheric dynamics. The method utilizes a hybrid spatial discretisation which consists  
of mixed finite elements for the non-linear Stokes flow problem, coupled to a Lagrangian marker  
based discretisation to represent the material properties (viscosity and density). This approach is  
akin to the classical Marker-And-Cell (MAC) scheme of Harlow and the subsequently developed  
Material  Point  Method (MPM) of  Sulsky and  co-workers.  The geometric  flexibility  and  ease  of  
modelling large deformation processes afforded by such mesh-particle methods has been exploited  
by the geodynamics dynamics community over the last 15 years. 

The  strength  of  the  Stokes  preconditioner  fundamentally  controls  the scientific  throughput  
achievable  and  represents  the  largest  bottleneck  in the  development  of  our  understanding  of  
geodynamic processes. 

The possibility to develop a "cheap" and efficient preconditioning methodology which is suitable for 
the mixed Q2-P1 element is explored here. I describe a flexible strategy, which aims to address the  
Stokes preconditioning  issue  using  an  upper  block  triangular  preconditioner, together  with  a  
geometric  multi-grid preconditioner for  the viscous block.  The key to  the approach is  to utilize  
algorithms and data-structures  that  exploit  current  multi-core  hardware  and avoid  the  need for  
excessive global reductions. In order to develop a scalable method, special consideration is given to; 
the definition of the coarse grid operator, the smoother and the coarse grid solver.

The  performance  characteristics  of  this  hybrid  matrix-free  /  partially assembled  multi-level  
preconditioning  strategy  is  examined.  The robustness  of  the  preconditioner  with  respect  to  the  
viscosity contrast and the topology of the viscosity field, together with the parallel scalability is  
demonstrated.
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Preconditioners for Sequences of Linear Systems
Eric de Sturler 1

1 Virginia Polytechnic Institute and State University Blacksburg, VA 24061-0002 -  United States

Computing good preconditioners is an important but expensive component of  many simulations 
Therefore,  it  makes sense to update preconditioners rather than compute them from scratch for 
sequences of linear systems. This is particularly relevant for problems where we may not have the 
matrix available directly (matrix-free problems).

We consider several classes of problems and several techniques such as updating factorizations, low 
rank  updates  to  preconditioners,  and  updating  preconditioners  for  dynamically  adapted  meshes 
Finally, we focus on an interesting approach that can be combined with any type of preconditioner 
For a sequence of linear systems and a preconditioner for the initial system, we compute a sequence 
of sparse matrices as cheap maps from each matrix to either the initial matrix or the previous matrix  
Combined  with  the  initial  preconditioner  (and  possibly  previous  maps)  this  gives  an  effective 
preconditioner for each matrix at low cost.
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Using the Jacobian-free Newton-Krylov method 
to solve the sea-ice momentum equation

Jan Sedlacek 1 
1 Eidgenössische Technische Hochschule Zürich, Switzerland

Sea ice, with its insulating properties, plays an important role in the exchange of heat, humidity and 
momentum in the high latitudes. A good description of the motion of the sea ice is therefore of 
crucial  importance,  as  sea-ice motion is  responsible  for the formation of  divergence (leads)  and 
convergence zones in the ice pack, which change its insulating properties. The sea-ice momentum 
equation is  highly non-linear because of  water drag and the rheology (the relationship between 
applied stresses  and resulting deformations).  As climate models  move towards higher  resolution 
computational cost plays an increasingly crucial role. I will present our approach for implementing 
the Jacobian-free Newton-Krylov method as a new solver sea-ice momentum equation and will also 
highlight difficulties we encountered and address the question on convergence criteria.

3/15



3-dimensional eigenmodal analysis 
of electromagnetic structures

P. Arbenz 1, H. Guo 1  & Y. Matsuo 1

1 ETH Zürich, Computer Science Department, Switzerland
arbenz@inf.ethz.ch

The design of Radio Frequency (RF) structures is a complex optimization process. RF structures are  
elements in which charged particle are accelerated by an oscillating electric field which is obtained 
by exciting the proper eigenmode of the accelerator cavity. The shape of the eigenmodes as well as 
their  frequencies  are  determined  by  the  shape  of  the  cavity.  Frequencies  and  eigenmodes  are 
determined by the time-harmonic Maxwell equations.

Our  solver  Femaxx  generally  discretizes  the  time-harmonic  Maxwell  Equations  with  the  finite 
element method (FEM) in 3-dimensional space on unstructured tetrahedral grids, in order to model 
complicated curved geometry. The code is parallelized and optimized for distributed memory parallel  
computing architectures.

We discuss our approaches for solving the time-harmonic Maxwell equations when there is loss. 
Femaxx  implements  the  Jacobi-Davidson  QZ  (JDQZ)  method,  for  solving  linear  or  quadratic 
eigenvalue problems. The latter includes electromagnetic loss mechanisms in the model.

Femaxx also implements a nonlinear Jacobi-Davidson (NLJD) method. Using a fully iterative scheme 
of  NLJD  eigensolvers,  we  analyze  plasmonic  nanostructures,  fully  considering  the  dispersive 
dielectric properties of metals in the optical region of the electromagnetic spectrum.

We will in particular discuss our usage of the Trilinos framework.
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The Multi Level Multi Domain (MLMD) method: a semi-implicit adaptive
algorithm for Particle In Cell plasma simulations

M.E. Innocenti1, A. Beck2, S. Markidis3, G. Lapenta1

1 KU Leuven, Leuven, Belgium
2 Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, France

3 HPCViz Department, KTH Royal Institute of Technology, Stockholm, Sweden

The computational effort required by Particle In Cell (PIC)
space physics simulations demands the use of increasingly so-
phisticated numerical methods, since the strict stability con-
straints of explicit PIC simulations make them very demanding
even for the current supercomputing capabilities.
The community has so far tackled this issue in the following
ways. Either fully implicit (Chen et al., 2011; Markidis and
Lapenta, 2011) / semi implicit (Vu and Brackbill, 1992; Lapenta
et al., 2006; Cohen et al., 1989) methods are used to bypass
the strict stability constraints of explicit PIC codes or Adap-
tive Mesh Refinement (AMR) techniques (Vay et al., 2004; Fu-
jimoto and Sydora, 2008) are employed to change locally the
simulation resolution. This saves computational resources if only a portion of the domain needs to be re-
solved with the highest resolution. To the authors’ knowledge, however, no code in use combines the benefits
of implicit methods and adaptive techniques.
Innocenti et al. (2013) and Beck et al. (2013) have proposed for the first time an adaptive technique which
uses as baseline algorithm the Implicit Moment Method (IMM) (Vu and Brackbill, 1992; Lapenta et al.,
2006). The use of the IMM allows to taylor the resolution used in each simulated level to the physical
scales of interest, without being constrained to resolve the Debye length and the inverse electron plasma
frequency on each level for stability reasons, as in explicit AMR codes. As a consequence, very high Re-
finement Ratios RF (i.e., the ratio in resolution between the levels) are achievable.
The method is named Multi Level Multi Domain (MLMD) to highlight some critical differences with re-
spect to the standard AMR implementations. A major difference is that all the levels are simulated as
complete domains: both fields and particles are simulated also in the areas of grid overlap. This allows the
different levels to evolve according to the local dynamics and achieve optimal level interlocking.
The MLMD algorithm is demonstrated by simulating magnetic reconnection (Biskamp, 2005) problems
with very high Refinement Ratios between the simulated levels, up to RF = 12 per simulated dimension.
The figure illustrates the kind of computational savings registered with the MLMD method. The execution
times of two level 2D MLMD simulations with increasing Refinement Ratios RFs between the levels (red
line) are compared with the execution times of "standard" simulations performed using the same resolution
of the refined level on the entire domain (blue line). As evident, astonishing execution time savings are
obtained if only a fraction 1/RF2 of the entire domain needs increased resolution.

Beck, A., Innocenti, M., Lapenta, G., and Markidis, S. (2013). Multi-level multi-domain algorithm implementation for two-
dimensional multiscale particle in cell simulations. submitted.

Biskamp, D. (2005). Magnetic reconnection in plasmas, volume 3. Cambridge University Press.
Chen, G., Chacón, L., and Barnes, D. C. (2011). Journal of Computational Physics, 230(18):7018–7036.
Cohen, B. I., Langdon, A., Hewett, D. W., and Procassini, R. J. (1989). Journal of Computational Physics, 81(1):151 – 168.
Fujimoto, K. and Sydora, R. D. (2008). Computer Physics Communications, 178:915–923.
Innocenti, M., Lapenta, G., Markidis, S., Beck, A., and Vapirev, A. (2013). Journal of Computational Physics, 238(0):115 – 140.
Lapenta, G., Brackbill, J., and Ricci, P. (2006). Physics of plasmas, 13:055904.
Markidis, S. and Lapenta, G. (2011). Journal of Computational Physics, 230(18):7037 – 7052.
Vay, J., Colella, P., Friedman, A., Grote, D. P., McCorquodale, P., and Serafini, D. B. (2004). Computer Physics Communications,

164:297–305.
Vu, H. and Brackbill, J. (1992). Computer physics communications, 69(2):253–276.
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A Jacobian-Free Newton-Krylov method 
for time-implicit multidimensional hydrodynamics 

Maxime Viallet 1,
1 Max-Planck-Institut für Astrophysik, Garching, Germany

I will present a Jacobian-Free Newton-Krylov method for time-implicit hydrodynamics. I will show 
that the key ingredient of such a solver is the preconditioner, which has to deal with stiffness arising 
from fast  sound waves.  I  will  present our current implementation of  a  preconditioning technics 
known  as  "Physics-Based  Preconditioning",  which,  unlike  algebraic  preconditioning,  aims  at 
introducing physical properties of the system within the preconditioner itself. 
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Time-Implicit Hydrodynamics for
Gravitational Flows
S. Van Criekingen 1, M. Szydlarski 2,
B. Braconnier 3, J. Vides 1, E. Audit 1,

1 Maison de la Simulation, Gif-sur-Yvette, France,
2 University of Oslo, Institute of Theoretical Astrophysics, Norway,

3 IFP-Energie Nouvelles, Rueil-Malmaison, France.

Within the framework of the 3D hydrodynamical code HERACLES [1] simulating astrophysical 
fluid  flows,  we  consider  the  Euler-Poisson  model,  i.e.,  the  Euler equations  supplemented  by  
gravitational effects. We derive a time-implicit resolution scheme from the explicit one developed by 
Vides et al. [2]. This requires computing a Jacobian, which is done symbolically using the automatic  
differentiation tool TAPENADE [3] developed at INRIA. The resulting sparse linear system is solved 
using the PETSc [4] library. We present parallel numerical results for the Rayleigh-Taylor instability 
obtained on up to eight thousand CPU cores.

References
[1] E. Audit et al. http://irfu.cea.fr/Projets/Site heracles/index.html.
[2] J. Vides, B. Braconnier, E. Audit, C. Berthon, and B. Nkonga. A Godunov-Type Solver for the Numerical 
Approximation of Gravitational Flows. Communications in Computational Physics, 15(1):46–75, 2014.
[3] Inria Tropics team. http://www-sop.inria.fr/tropics/tapenade.html.
[4] Satish Balay, Jed Brown, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley, Lois  
Curfman McInnes, Barry F. Smith, and Hong Zhang. http://www.mcs.anl.gov/petsc.
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Well-balanced schemes 
for the Euler equations with gravitation

Roger Käppeli 1

1 Seminar for Applied Mathematics, ETH Zürich, Switzerland

Conservation laws with source terms, i.e. balance laws, allow steady state solutions where the flux  
divergence is exactly balanced by the source term. Standard high-resolution finite volume schemes  
do not preserve a discrete version of this balance and generate spurious waves that can obscure  
waves of interest. The main reason for the failure of standard schemes to preserve this equilibrium  
relies in the fact that it cannot be represented by simple polynomial functions commonly used in the  
reconstruction step. Therefore, standard reconstruction techniques lead to non-zero truncation errors 
inducing spurious waves. Schemes that preserve exactly some discrete version of this equilibrium are 
termed as well-balanced.

In this talk we consider the Euler equations with gravitation. An interesting class of steady states are 
the hydrostatic ones, where the pressure gradient exactly balances the gravitational force. This type  
of  equilibrium arises  for  example  in  the  study of  atmospheric phenomena  that  are  essential  in  
numerical weather prediction and in climate modeling as well as in a wide variety of contexts in  
astrophysics such as modeling solar climate or simulating supernova explosions.

We  will  report  on  our  newly  developed  well-balanced  high-order  finite volume  schemes  to  
approximate  the  Euler  equations  with  gravitation. The  schemes  preserve  discrete  equilibria,  
corresponding to a large class of physically stable hydrostatic steady states. Based on a novel local  
hydrostatic reconstruction, the derived schemes are well-balanced for any consistent numerical flux  
for  the  Euler  equations. The  form  of  the  hydrostatic  reconstruction  is  both  very  simple  and  
computationally efficient as it requires no analytical or numerical integration. 
Moreover,  as  required  by  many  interesting  astrophysical  scenarios,  the schemes  are  applicable  
beyond the ideal gas law. Both first- and second-order accurate versions of the schemes and their  
extension  to  multi-dimensional  equilibria  are  presented. Several  numerical  experiments  
demonstrating the superior performance of the well-balanced schemes, as compared to standard  
finite volume schemes, are also presented. 
We will especially emphasize astrophysically relevant applications.
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A preconditioned Roe scheme for use 
in low Mach number hydrodynamical simulations

Fabian Miczek1 , Friedrich Roepke2 , Philipp Edelmann1 
1 Max Planck Institute for Astrophysics (MPA)

Karl-Schwarzschild-Str. 1 85741 Garching bei München - Germany
2 Universität Würzburg

Campus Hubland Nord Emil-Fischer-Str. 31 97074 Würzburg - Germany

Finite-volume, Riemann-solver-based methods are among the standard methods for the simulation of 
hydrodynamical flows. While they perform very well in the high Mach number regime, many of  
them suffer from excessive numerical dissipation at low Mach numbers. Several modified sets of  
PDEs  exist for  simulations  in  this  regime.  However,  in  the  intermediate  regime,  in  which  
compressible effects are non-negligible, the original equations have to be solved. We present a new  
flux preconditioning matrix for Roe schemes solving the compressible Euler equations. It greatly  
reduces the numerical dissipation and makes it independent of the Mach number. Together with  
implicit  time  stepping,  this  allows  us  to  efficiently  simulate  low  Mach  number  flows  without 
neglecting  compressible  effects.  To solve  the  non-linear  equations  we use  the Newton-Raphson  
method;  for  the  linear  system  we  use  a  range  of  Krylov  methods  together  with  different 
preconditioners. We will show some benchmarks of the different solvers.
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Implicit-Explicit Time Integration Methods 
for Astrophysical Applications

Friedrich Kupka 1, Natalie Happenhofer 1, Hannes Grimm-Strele 1 & Herbert Muthsam 1

1 Faculty of Mathematics, University of Vienna, Austria

Astrophysical problems are very often described by non-linear, dynamical equations which model 
processes operating on vastly different spatial and temporal scales. In particular, for the physics of 
stars and planets the hydrodynamical equations and various extensions thereof can often be used to  
accurately model the main properties of these physical systems. From a mathematical point of view 
this leads to quasi-linear partial differential equations of mixed type. Numerical schemes for their  
solution thus have to be constructed having different classes of equations (hyperbolic, parabolic, and 
even elliptic)  in mind. Weighted essentially non-oscillatory methods are a powerful approach to 
discretize the advection and pressure gradient terms in these equations. However, the sound waves 
introduced through the pressure gradient terms may operate on much shorter time scales than the  
actual  advection which takes  place in an  astrophysical  flow and stiff  terms due to  diffusion or 
radiative transfer may also impose unwanted, strict limits to time steps achievable by explicit time 
integration methods. Thus, sophisticated methods are required which can efficiently integrate the  
resulting systems of equations in time. In this presentation I will discuss new advances made by 
constructing strong stability presering, implicit-explicit Runge Kutta methods as well as improved 
versions of  a further (time-)  operator splitting method developed to deal  with pressure gradient 
terms. The motivation behind contructing these methods will be explained as well as some of their 
underlying theory, followed by applications of them to astrophysical problems.
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Preconditioners for Discontinuous Galerkin Discretizations 
of 3D viscous compressible flows

Philipp Birken 1, Mark Haas 2, Claus-Dieter Munz 3

1 University of Kassel (Supported by the DFG via SFB-TRR 30)
Heinrich-Plett-Str. 40, D-34132 Kassel

birken@mathematik.uni-kassel.de

2 Robert Bosch GmbH
Postfach 30 02 40, D-70442 Stuttgart

mark.haas@de.bosch.com

3 University of Stuttgart
Pfaffenwaldring 21, D-70550 Stuttgart

munz@iag.uni-stuttgart.de

Keywords:  Discontinuous  Galerkin,  Navier-Stokes  equations,  implicit  time  integration, 
preconditioning, JFNK

We consider the time dependent three dimensional compressible Navier-Stokes equations and their 
discretization using discontinuous Galerkin (DG) methods. For wall bounded flows, the boundary 
layer leads to extremely fine cells, meaning that the use of implicit time integration scheme becomes 
attractive. Here, we use ESDIRK and Rosenbrock methods, where the appearing linear and nonlinear 
equation systems are solved using right preconditioned Jacobian-Free Newton-Krylov schemes [5].  
As a baseline scheme, these are compared to standard explicit Runge-Kutta schemes and to a type of 
predictor-corrector schemes that allows local time stepping for DG methods [3].

For implicit schemes, the core difficulty is to find a preconditioner for the block systems that is  
efficient and uses as little storage as possible, since for DG methods, the size of the blocks is much  
larger than for finite volume schemes. Furthermore,  it  should perform well  in parallel.  The DG  
method we consider is the polymorphic modal-nodal scheme of Gassner et. al., which uses a modal  
basis for the representation of the solution [4]. Thus, we suggest the ROBO-SGS preconditioner [1],  
an SGS method using reduced order offdiagonal blocks, which we find to be significantly better than  
ILU or the multilevel ILU of Persson et. al. [6]. These reduced blocks can be obtained in a straight  
forward manner due to the hierarchical basis.

Furthermore, the choice of tolerances in the adaptive time integration scheme, the Newton method 
and GMRES is an important point. Using embedded error estimators and inexact Newton schemes,  
where the tolerances are given by the strategy of Eisenstat and Walker [2], we obtain an efficient 
and accurate  time  integration  scheme  that  has  a  good  strong  parallel  scaling.  This  will  be  
demonstrated by corresponding numerical results.

References
[1] P. Birken, G. Gassner, M. Haas, and C.-D. Munz. Preconditioning for modal discontinuous Galerkin methods for  
unsteady 3D Navier-Stokes equations. J. Comp. Phys. 11/17
[2] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact newton method. SIAM J. Sci. Comput.,  
17(1):16–32, 1996.
[3] G. Gassner, M. Dumbser, F. Hindenlang, and C.-D. Munz. Explicit one-step time discretizations for discontinuous  
Galerkin and finite volume schemes based on local predictors. J. Comp. Phys., 230(11):4232–4247, 2011.
[4] G. J. Gassner, F. Lörcher, C.-D. Munz, and J. S. Hesthaven. Polymorphic nodal elements and their application in  
discontinuous Galerkin methods. J. Comp. Phys., 228(5):1573–1590, 2009.
[5] D. A. Knoll and D. E. Keyes. Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J.  
Comp. Phys., 193:357–397, 2004.
[6] P.-O. Persson and J.  Peraire.  Newton-GMRES Preconditioning for Discontinuous Galerkin discretizations of  the 
Navier-Stokes equations. SIAM J. Sci. Comp., 30:2709–2733, 2008.
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Newton-Krylov based continuation method 
to study convection in a tilted parallelepiped cavity

D. Henry 1, H. Ben Hadid 1  and J.F. Torres1, 2

1  Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS/Université de Lyon,
Ecole Centrale de Lyon/Université Lyon 1/INSA de Lyon,

ECL, 36 avenue Guy de Collongue, 69134 Ecully Cedex, France.
2  Graduate School of Engineering, Tohoku University,

6-6-04, Aramaki Aza Aoba Aoba-ku, Sendai, Miyagi 980-8579, Japan

A continuation method developed from a three-dimensional spectral finite element code is used to 
study  natural  convection  in  a  tilted  parallelepiped  cavity.  This  continuation  method  allows  the 
calculation of  solution branches,  the stability analysis  of  the solutions along these branches,  the  
detection and precise direct calculation of the bifurcation points, and the jump to newly detected  
stable or unstable branches, all this being managed by a simple continuation algorithm. The non-
linear  problems appearing  at  the different  steps  (calculation  of  the  solutions,  calculation  of  the  
bifurcation points)  are  solved with  Newton-Krylov  methods  based on the  linear  iterative  solver 
GMRES. After presentation of all these methods and of their efficiency, we will show the results  
obtained in the study of natural convection in a tilted parallelepiped cavity. The cavity has its length 
equal to two times the side of its square cross-section and it contains a fluid with a Prandtl number  
Pr = 1. A detailed bifurcation diagram is first obtained in the case without inclination in order to get 
the sequence of the different branches of solutions and determine the stable solutions. The focus is  
then put on the stable solutions in the inclined cavity, when the tilt occurs around the longer axis of  
the cavity.  The subtle changes induced by the tilt  on the convective system are clarified.  Three  
different stable solutions are obtained and characterized: the longitudinal roll L− solution (with the  
same sense of rotation as the inclination angle), the longitudinal roll L+ solution (with a sense of  
rotation  opposite  to  the  inclination  angle),  and  the  oblique  roll  O± solutions  (corresponding  to  
transverse roll  solutions perturbed by the longitudinal  flow induced by the tilt).  The domain of  
existence of these stable solutions is eventually obtained and described in the Rayleigh number-
inclination parameter space.
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Newton-Krylov methods beyond the computation of steady 
solutions: two applications to Fluid Dynamics problems

Juan Sanchez Umbria 1, Marta Net 1 , Ferran Garcia 1, 
1  Departament de Física Aplicada, Universitat Politècnica de Catalunya, Barcelona, Spain.

The computation  by continuation methods  of  steady solutions  of  large-scale  dynamical  systems 
(ODE/DAE), obtained by discretizing systems of elliptic and/or parabolic PDEs, is a common tool 
used  by  researchers  in  Nonlinear  Elasticity  and  Fluid  Mechanics  since  the  late  seventies.  The 
efficient computation of other invariant objects by other means than just time evolution is very 
recent. In the first part of the talk, algorithms based on Newton-Krylov techniques for computing 
fixed points, periodic orbits, and invariant tori will be presented. Some results of the application of 
these methods to the thermal convection of a binary fluid mixture in a rectangular two-dimensional 
box will be shown In the second part the results of the application of Newton-Krylov methods for the 
computation of travelling waves appearing in the thermal convection of a pure fluid contained in a 
spherical  shell with differential heating are studied. They are computed as steady solutions of a  
system for  the  waves,  in  the  frame of  reference  of  the  spheres.  In  this  case  the  special  block-
tridiagonal structure of the linear part of the equations provides a preconditioner, which allows an 
efficient  calculation. Their  stability is  also studied, and the secondary bifurcations to modulated 
waves are detected. 
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Time-parallel methods for massively parallel solution of PDEs
D. Ruprecht†, R. Speck∗†, R. Krause†,

†Institute of Computational Science, Università della Svizzera italiana, Switzerland.
∗Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany.

I. OVERVIEW

Todays fastest supercomputers already feature more than a million
cores and this number is expected to rise beyond 100 million over
the next decade. Because at the same time frequencies of individual
processors remain constant or even decrease for reasons of efficiency,
developers are increasingly confronted with the fact that accelerating
numerical (but also other) codes necessarily requires to exploit
concurrency. This, in turn, means that concurrency is more and more
becoming a critical property of numerical algorithms. To this effect,
methods for solving initial value problems that provide concurrency
in the temporal direction have been shown to be an effective way to
increase the degree of parallelism in the solution of time-dependent
PDEs. Several such ”time-parallel” methods exist, ranging from the
very early interpolation-based scheme in [1] over the parabolic multi-
grid method [2] to, more recently, the Parareal algorithm [3] and the
”parallel full approximation scheme in space and time” (PFASST) [4].
The talk will focus on both Parareal and PFASST, discuss some
of their critical mathematical properties and present benchmarks of
the performance of these methods for large-scale parallel solutions
of time-dependent PDEs. A very brief summary of the key aspects
including multiple references is given below.

II. PARAREAL

Parareal is at present probably the most popular time-parallel
method, as it allows to use basically arbitrary one-step methods within
the Parareal iteration. Denoting an accurate but computationally
expensive method by F and a coarse but computationally cheap
method by G, Parareal replaces the straightforward serial time-
stepping procedure yn+1 = F(yn), n = 0, . . . N − 1 by an iteration

yk+1
n+1 = G(yk+1

n ) + F(yk
n)− G(yk

n), k = 0, . . . , Nit. (1)

The key here is that once the values yk
n from the previous iteration

are known, the computationally expensive computation of F(yk
n) for

n = 0, . . . , N −1 can be done in parallel on N processors, followed
by a serial but cheap correction in which G(yk+1

n ) is evaluated and
yk+1
n+1 computed. A detailed discussion of the algorithm plus many

additional references can be found e.g. in [5], a detailed mathematical
analysis is conducted in [6]. Its speedup using N processors and
performing Nit iterations can by design not be optimal and is
restricted by two competing bounds

s(N) ≤ min

{
N

Nit
,

Runtime G
Runtime F

}
. (2)

Nevertheless, Parareal can provide additional speedup for the solution
of time-dependent problems after spatial parallelization is saturated.

III. PFASST

The PFASST method has been introduced in [4]. It is based
on ”spectral deferred correction” (SDC) methods [7], an iterative
approach for computing collocation solutions. PFASST employs a
hierarchy of space-time levels on which iterations of SDC (so-called
”sweeps”) are performed. These levels are coupled, as in nonlinear
multi-grid methods, by an FAS-correction that allows the solution on
the coarser levels to converge up to an accuracy determined by the
discretization on the finest level. PFASST can also be interpreted as
a time-parallel version of a multi-level spectral deferred correction

method (MLSDC) [8]. By not solving the fine-level problem to full
accuracy but only performing SDC sweeps, PFASST has a signifi-
cantly improved speedup bound compared to Parareal. Ideal speedup,
however, is also not obtainable. The capability of PFASST to be used
in parallel simulations on O(100k) cores has been demonstrated for
different scenarios. In [9], it is shown that PFASST can accelerate
a particle-based Navier-Stokes solver beyond the saturation point of
the underlying spatial parallelization of a Barnes-Hut tree-code [10].
Scaling of PFASST combined with a mesh-based discretization and a
parallel multi-grid (PMG) as space-parallel solver for implicit time-
stepping is studied in [11] and the impact of using spatial coarsening
strategies in large-scale parallel simulations is discussed. Finally, the
study is extended in [12], where scaling results of PFASST+PMG on
up to all 448K cores of the IBM Blue Gene/Q JUQUEEN at Jülich
Supercomputing Centre are reported.
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Newton-Krylov-Schwarz
for coupled multi-physics problems

Xiao-Chuan Cai 1
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Newton-Krylov-Schwarz  is  a  general  purpose  parallel  solution  method  for  solving  system  of 
algebraic equations arising from the discretization of nonlinear partial differential equations. In a 
Newton-Krylov algorithm, the nonlinear system is solved by an inexact Newton method, in which 
the Jacobian systems are solved with a preconditioned Krylov subspace method. The success of the 
overall  approach  depends  heavily  on  what  preconditioner  is  used,  and  the  selection  of  the  
preconditioner is often problem dependent, and also computer architecture dependent. In this talk, 
we discuss several preconditioning strategies for coupled multi-physics problems including global 
climate  modeling,  incompressible  flow  simulations,  fluid-structure  interactions,  etc.  Numerical 
results will be presented to show the parallel scalability of the approach obtained on supercomputers  
with thousands or tens of thousands of processor cores.
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