Well-balanced schemes for the Euler equations with gravitation

Roger Kapelli

Joint work with S. Mishra

Seminar for Applied Mathematics

ETH
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
Outline

- Introduction
- Well-balanced scheme for HydroStatic Equilibrium (HSE)
 - First order
 - Second order
- Multi-D & further extensions
- Conclusions
Outline

• Introduction

• Well-balanced scheme for HydroStatic Equilibrium (HSE)
 • First order
 • Second order

• Multi-D & further extensions

• Conclusions
Evolution as a function of mass
i) Introduction

Stellar life cycle

Evolution as a function of mass

Where do the elements come from?

Solar system abundances

From primordial abundances of roughly H (75%), He (25%), and a very small amount of Li, elements are synthesized through various stages of stellar evolution, including nuclear burning and neutron capture. Adapted from Asplund 2005.
Stellar life cycle

Evolution as a function of mass

Core-Collapse Supernova

Birth Life Death

Protostar Blue Supergiant Red Giant Type II Supernova Neutron Star Type Ia Supernova White Dwarf Planetary Nebula Red Dwarf White Dwarf

0.013 – 0.08 M☉ 0.08 – 0.4 M☉ 0.4 – 8 M☉ > 8 – 10 M☉ > 25 M☉ > 40 M☉
Core-collapse supernova

• General idea:
 • Implosion of iron core of massive \(M \gtrsim 8M_\odot \) at the end of thermonuclear evolution
 • Explosion powered by gravitational binding energy of forming compact remnant:

\[
E_b \approx 3 \times 10^{53} \left(\frac{M}{M_\odot} \right)^2 \left(\frac{R}{10\text{km}} \right)^{-1} \text{ erg}
\]

GRAVITY BOMB!

\[M \quad \text{Mass of remnant} \]
\[R \quad \text{Radius of remnant} \]
i) Introduction

Core-collapse supernova

From S. Scheidegger

From M. Liebendoerfer
Radial profile

- The problem: (in our simulations)

Ability to maintain near hydrostatic equilibrium for a long time!
Outline

• Introduction

• Well-balanced scheme for HydroStatic Equilibrium (HSE)
 • First order
 • Second order

• Multi-D & further extensions

• Conclusions
Well-balanced scheme for HSE

- Consider 1D hydrodynamics eqs with gravity

\[
\frac{\partial u}{\partial t} + \frac{\partial F}{\partial x} = S
\]

\[
\begin{bmatrix}
\rho \\
\rho v \\
E
\end{bmatrix}, \quad
\begin{bmatrix}
\rho v \\
\rho v^2 + p \\
(E + p)v
\end{bmatrix}, \quad
S = -\begin{bmatrix}
0 \\
\rho \\
\rho v
\end{bmatrix} \frac{\partial \phi}{\partial x}
\]

- Classical solution algorithm:
 - Solve homogeneous eqs with Godunov type method (i.e. solve Riemann problem)
 - Account for source term in second step (split/unsplit)
Well-balanced scheme for HSE (2)

- Classical solution algorithm:

\[u_{i}^{n+1} = u_{i}^{n} - \frac{\Delta t}{\Delta x} \left(F_{i+1/2}^{n} - F_{i-1/2}^{n} \right) + \Delta t S_{i}^{n} \]

- Numerical flux \(F_{i \pm 1/2}^{n} = \mathcal{F}(u_{i \pm 1/2}^{n,L}, u_{i \pm 1/2}^{n,R}) \) from (approximate) Riemann solver, e.g.

 - (Local) Lax-Friedrichs Lax (1954), Rusanov (1961)
 - HLL (C) Harten, Lax and van Leer (1983), Toro et al. (1994)
 - Roe Roe (1981)
Well-balanced scheme for HSE (3)

Interested in hydrostatic equilibrium:

\[
\frac{\partial F}{\partial x} = S \quad \Rightarrow \quad \frac{\partial p}{\partial x} = -\rho \frac{\partial \phi}{\partial x}
\]

EoS: \(p = p(\rho, e) \)
Well-balanced scheme for HSE (3)

Interested in hydrostatic equilibrium:

\[
\frac{\partial F}{\partial x} = S \quad \Rightarrow \quad \frac{\partial p}{\partial x} = -\rho \frac{\partial \phi}{\partial x}
\]

EoS: \(p = p(\rho, e) \)

Discretise in cells \([x_{i-1/2}, x_{i+1/2}]\)
ii) WB scheme for HSE

Well-balanced scheme for HSE (3)

Interested in hydrostatic equilibrium:
\[
\frac{\partial F}{\partial x} = S \quad \implies \quad \frac{\partial p}{\partial x} = -\rho \frac{\partial \phi}{\partial x}
\]

EoS: \(p = p(\rho, \epsilon) \)

Discretise in cells \([x_{i-1/2}, x_{i+1/2}] \)

Define cell averages
\[
\begin{align*}
\mathbf{u}_i &= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \mathbf{u}(x, t^n) \, dx \\
S_i &= \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} S(\mathbf{u}(x, t)) \, dx
\end{align*}
\]
Well-balanced scheme for HSE (3)

Interested in hydrostatic equilibrium:

\[
\frac{1}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) = S_i^n
\]

\[
F_{i+1/2}^{LxF} = \frac{1}{2} (F_i + F_{i+1}) - \frac{S_{\text{max}}}{2} (u_{i+1} - u_i)
\]

Contains also gravity induced gradient!

\[
F_{i-1/2}^{LxF} = \frac{1}{2} (F_{i-1} + F_i) - \frac{S_{\text{max}}}{2} (u_i - u_{i-1})
\]
ii) WB scheme for HSE

Well-balanced scheme for HSE (3)

Hydrostatic atmosphere in a constant gravitational field

$$\phi(x) = gx \quad \rho(x) = \left[\rho_0^{\frac{\gamma - 1}{\gamma}} - \frac{g}{K} \frac{\gamma - 1}{\gamma} x \right]^{\frac{1}{\gamma - 1}} \quad p = \frac{p_0}{\rho_0^{\gamma}} \rho^{\gamma} = K \rho^{\gamma}$$

$$x \in [0, 2]$$

Error in pressure:
(after 2 sound crossing times)

<table>
<thead>
<tr>
<th>N</th>
<th>1st</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>2.1E-02</td>
<td>6.5E-05</td>
</tr>
<tr>
<td>256</td>
<td>1.1E-02</td>
<td>1.6E-05</td>
</tr>
<tr>
<td>512</td>
<td>5.3E-03</td>
<td>4.1E-06</td>
</tr>
<tr>
<td>1024</td>
<td>2.6E-03</td>
<td>1.0E-06</td>
</tr>
<tr>
<td>2048</td>
<td>1.3E-03</td>
<td>2.6E-07</td>
</tr>
</tbody>
</table>

$$Err = \frac{1}{N} \sum_i |p_i - p_i^0|$$

HLLC numerical flux
Well-balanced scheme for HSE (4)

• The problem: (in our simulations)

Ability to maintain near hydrostatic equilibrium for a long time!
ii) WB scheme for HSE

Well-balanced scheme for HSE (5)

- **Solutions:**
 - Define a **global** stationary state $u_0(r)$ **at each time step** and evolve $u(x) - u_0(r)$

Note: there are many, many more... especially for shallow-water eqs!!!
Well-balanced scheme for HSE (5)

• Solutions:
 - Define a **global** stationary state $u_0(r)$ at each time step and evolve $u(x) - u_0(r)$
 - Steady state preserving reconstructions, well-balanced schemes

Requirements

• Equilibrium not known in advance (self-gravity)
• Extensible for general EoS
• (At least) second order accuracy
• Preserve robustness of base shock capturing scheme

Note: there are many, many more... especially for shallow-water eqs!!!
Well-balanced scheme for HSE (6)

- Hydrostatic equilibrium

\[
\frac{\partial p}{\partial x} = -\rho \frac{\partial \phi}{\partial x}
\]

Describes only a mechanical equilibrium...

Density and pressure not uniquely determined

\[p = p(\rho, s) = p(\rho, T) \]

s Entropy

T Temperature

Arbitrary entropy or temperature profiles not (physically) stable (convection!)
Well-balanced scheme for HSE (7)

- Consider constant entropy profile

- Using the thermodynamic relation

\[dh = T \, ds + \frac{dp}{\rho} \]

\[h = e + \frac{p}{\rho} \quad \text{Enthalpy} \]

- Hydrostatic eq.

\[\frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{\partial h}{\partial x} = - \frac{\partial \phi}{\partial x} \]

- Or simply

\[h + \phi = \text{const} \]
ii) WB scheme for HSE

Well-balanced scheme for HSE (8)

Perform equilibrium reconstruction:

\[h + \phi = \text{const} \]

Equilibrium enthalpy

\[h_{0,i}(x) = h_i + \phi_i - \phi(x) \]

EoS

\[h_{0,i}(x) = h\left(s_i, p_{0,i}(x)\right) \]

\[p_{0,i}(x) \quad \& \quad \rho_{0,i}(x) \]

Eq. reconstructed primitive variables

\[\mathbf{w}_{i\pm1/2}^n = \begin{bmatrix} \rho_{0,i}^n(x_{i\pm1/2}) \\ v_{x,i}^n \\ p_{0,i}^n(x_{i\pm1/2}) \end{bmatrix} \]
Well-balanced scheme for HSE (9)

• Well-balanced discretization of momentum source term

\[
S_{\rho v, i}^n = \frac{p_{0,i}^n(x_{i+1/2}) - p_{0,i}^n(x_{i-1/2})}{\Delta x} = - \int_{x_{i-1/2}}^{x_{i+1/2}} \rho \frac{\partial \phi}{\partial x} \mathrm{d}x + O(\Delta x^2)
\]

• Then for data satisfying \(h + \phi = \text{const} \), \(v_x = 0 \) and any consistent numerical flux

\[
\frac{1}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) = S_i^n
\]

Well-balanced wrt hydrostatic equilibrium!
ii) WB scheme for HSE

Well-balanced scheme for HSE (10)

- Second order extension:
 \[r_{1,i}(x_j) = r_j - r_{0,i}(x_j) \]

 \[r = \text{pressure, density} \quad \text{Eq. perturbation} \quad \text{Data} \quad \text{Equilibrium} \]

 Stencil: \(j = \ldots, i-1, i, i+1, \ldots \)

 \[r_{1,i}(x) = r_{1,i}(x_i) + Dr_{1,i}(x - x_i) = \frac{r_{0,i}(x_{i-1}) - r_{i-1}}{\Delta x} + \frac{r_{i+1} - r_{0,i}(x_{i+1})}{\Delta x} \]

 Reconstruction in deviation from equilibrium

 Similar to Botta et al. 2004, Fuchs et al. 2010

- Time stepping:
 \[u^* = u^n + \Delta t^n L(u^n) \]

 Strong Stability Preserving
 Runge-Kutta,
 Gottlieb et al. 2001

 \[u^{**} = u^* + \Delta t^n L(u^*) \]

 \[u^{n+1} = \frac{1}{2} (u^n + u^{**}) \]
Example 1

Hydrostatic atmosphere in a constant gravitational field

\[\phi(x) = gx \quad \rho(x) = \left[\rho_0^{\gamma - 1} - \frac{g}{K} \frac{\gamma - 1}{\gamma} x \right]^{\frac{1}{\gamma - 1}} \]

\[p = \frac{p_0}{\rho_0} \rho^\gamma = K \rho^\gamma \]

\[h + \phi = \text{const} \]

Error in pressure:

<table>
<thead>
<tr>
<th>N</th>
<th>1st</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>2.1E-02 / 1.3E-14</td>
<td>6.5E-05 / 1.3E-14</td>
</tr>
<tr>
<td>256</td>
<td>1.1E-02 / 3.6E-14</td>
<td>1.6E-05 / 1.5E-14</td>
</tr>
<tr>
<td>512</td>
<td>5.3E-03 / 7.7E-14</td>
<td>4.1E-06 / 4.6E-14</td>
</tr>
<tr>
<td>1024</td>
<td>2.6E-03 / 5.7E-14</td>
<td>1.0E-06 / 6.1E-14</td>
</tr>
<tr>
<td>2048</td>
<td>1.3E-03 / 1.2E-13</td>
<td>2.6E-07 / 1.5E-14</td>
</tr>
<tr>
<td>rate</td>
<td>1.00 / -</td>
<td>2.00 / -</td>
</tr>
</tbody>
</table>

\[Err = \frac{1}{N} \sum_i |p_i - p^0_i| \]
Example 2

Hydrostatic atmosphere in a constant gravitational field

\[v(t, x = 0) = 10^{-6} \sin (8\pi t) \]

+ small perturbation

\[N = 1024 \]

Error in pressure:

<table>
<thead>
<tr>
<th>N</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>3.1E-05 / 1.9E-07</td>
</tr>
<tr>
<td>256</td>
<td>7.8E-06 / 6.8E-08</td>
</tr>
<tr>
<td>512</td>
<td>2.0E-06 / 2.5E-08</td>
</tr>
<tr>
<td>1024</td>
<td>4.8E-07 / 8.5E-09</td>
</tr>
<tr>
<td>2048</td>
<td>1.2E-07 / 4.1E-09</td>
</tr>
</tbody>
</table>

\[Err = \frac{1}{N} \sum_{i} |p_i - p_i^0| \]
Example 3

Hydrostatic atmosphere in a constant gravitational field

ii) WB scheme for HSE

\[v(t, x = 0) = 0.1 \sin (8\pi t) \]

- large perturbation

\[N = 1024 \]

Error in pressure:

<table>
<thead>
<tr>
<th>N</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>9.8E-03 / 1.1E-02</td>
</tr>
<tr>
<td>256</td>
<td>4.1E-03 / 4.9E-03</td>
</tr>
<tr>
<td>512</td>
<td>1.9E-03 / 2.0E-03</td>
</tr>
<tr>
<td>1024</td>
<td>8.7E-04 / 8.0E-04</td>
</tr>
<tr>
<td>2048</td>
<td>5.5E-04 / 3.3E-04</td>
</tr>
</tbody>
</table>

rate 1.05 / 1.28

\[Err = \frac{1}{N} \sum_{i} |p_i - p_i^0| \]
Outline

• Introduction
• Well-balanced scheme for HydroStatic Equilibrium (HSE)
 • First order
 • Second order
• Multi-D & further extensions
• Conclusions
Multi-dimensional extension

- Straight forward directional application of HydroStatic Reconstruction

\[\frac{d u_{i,j}}{dt} = L(u) = - \frac{1}{\Delta x} \left(F_{i+1/2,j} - F_{i-1/2,j} \right) - \frac{1}{\Delta y} \left(G_{i,j+1/2} - G_{i,j-1/2} \right) + S_{i,j} \]

- Hydrostatic equilibrium:

\[h + \phi = const \]
Example 4

Polytrope: model star (e.g. main sequence stars, white dwarfs, neutron stars)

HSE: $\nabla p = -\rho \nabla \phi$ Poisson equation: $\nabla^2 \phi = -4\pi G \rho$

Equation of state $p = K \rho^\gamma$ $K = 1$

Take $\gamma = 2 \sim$ neutron stars

Then there's an exact solution:

$$\rho(x) = \rho_c \frac{\sin(\alpha r)}{r}$$

$$\phi(x) = -\gamma K \rho(x)$$

$$\alpha = \sqrt{\frac{2K}{4\pi G}} \quad r = \sqrt{x^2 + y^2 + z^2}$$
Example 4

Evolution for 20 “sound crossing” times

Error in density:

<table>
<thead>
<tr>
<th>N</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1.3E-02 / 1.5E-14</td>
</tr>
<tr>
<td>64</td>
<td>3.6E-03 / 3.0E-14</td>
</tr>
<tr>
<td>128</td>
<td>1.0E-03 / 5.6E-14</td>
</tr>
</tbody>
</table>

rate 1.82 / -
Example 4

Small perturbation \(\rho(x) = \rho_0(x) + Ae^{-100x^2} \quad A = 10^{-3} \)

<table>
<thead>
<tr>
<th>N</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>8.4E-04 / 1.1E-06</td>
</tr>
<tr>
<td>64</td>
<td>2.1E-04 / 3.7E-07</td>
</tr>
<tr>
<td>128</td>
<td>5.1E-05 / 1.1E-07</td>
</tr>
</tbody>
</table>

Error in pressure:

- NO HSE
- WITH HSE
- Reference

Pressure dev.
Example 4

Small perturbation: \(\rho(x) = \rho_0(x) + Ae^{-100x^2} \quad A = 10^{-3} \)

Error in velocity:

<table>
<thead>
<tr>
<th>N</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>6.0E-04 / 8.8E-07</td>
</tr>
<tr>
<td>64</td>
<td>1.6E-04 / 3.0E-07</td>
</tr>
<tr>
<td>128</td>
<td>4.1E-05 / 8.5E-08</td>
</tr>
<tr>
<td>rate</td>
<td>1.92 / 1.69</td>
</tr>
</tbody>
</table>
ii) Multi-D & further extensions

Example 4

Large perturbation (detonation!)

Pressure

Error in pressure:

<table>
<thead>
<tr>
<th>N</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>3.3E-02 / 3.3E-02</td>
</tr>
<tr>
<td>64</td>
<td>1.8E-02 / 1.8E-02</td>
</tr>
<tr>
<td>128</td>
<td>9.6E-03 / 9.5E-03</td>
</tr>
<tr>
<td>rate</td>
<td>0.90 / 0.89</td>
</tr>
</tbody>
</table>
Example 4

ii) Multi-D & further extensions

Large perturbation (detonation!)

Velocity

Error in velocity:

<table>
<thead>
<tr>
<th>N</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>2.9E-02 / 2.8E-02</td>
</tr>
<tr>
<td>64</td>
<td>1.5E-02 / 1.4E-02</td>
</tr>
<tr>
<td>128</td>
<td>7.6E-03 / 7.6E-03</td>
</tr>
<tr>
<td>rate</td>
<td>0.96 / 0.94</td>
</tr>
</tbody>
</table>
Example 4

Rayleigh-Taylor instability

\[N = 128 \]
Example 4

ii) Multi-D & further extensions

Rayleigh-Taylor instability

Rayleigh-Taylor “mushrooms”

$N = 128$
Well-balanced scheme for HSE

- Consider constant temperature profile

- Using the thermodynamic relation

 \[dg = -s dT + \frac{dp}{\rho} \]

 \[g = h - Ts \]

 Gibbs free energy

- Hydrostatic eq.

 \[\frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{\partial g}{\partial x} = -\frac{\partial \phi}{\partial x} \]

- Or simply

 \[g + \phi = \text{const} \]

 Reconstruction...
Well-balanced scheme for HSE

Interested in **numerical** hydrostatic equilibrium:

\[
\frac{1}{\Delta x} \left(F_{i+1/2}^n - F_{i-1/2}^n \right) = S_i^n
\]

\[
\frac{\partial p}{\partial x} + O(\Delta x^2) = \frac{p_{i+1/2} - p_{i-1/2}}{\Delta x} = -\rho_i \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x} = -\rho \frac{\partial \phi}{\partial x} + O(\Delta x^2)
\]

\[
\frac{(p_{i+1/2} - p_i) - (p_{i-1/2} - p_i)}{\Delta x} = -\frac{\rho_i}{2} \frac{(\phi_{i+1} - \phi_i) - (\phi_{i-1} - \phi_i)}{\Delta x}
\]
Well-balanced scheme for HSE

Interested in **numerical** hydrostatic equilibrium:

\[
\frac{p_{i+1/2} - p_i}{\Delta x} - \frac{p_{i-1/2} - p_i}{\Delta x} = -\frac{\rho_i}{2} \left(\frac{\phi_{i+1} - \phi_i}{\Delta x} - \frac{\phi_{i-1} - \phi_i}{\Delta x} \right)
\]

Equilibrium reconstruction:

\[
p_{i+1/2} = p_i + \frac{\Delta x}{2} \Delta p_i^+
\]

\[
p_{i-1/2} = p_i - \frac{\Delta x}{2} \Delta p_i^-
\]

Equilibrium differences:

\[
\Delta p_i^+ = -\rho_i \frac{\phi_{i+1} - \phi_i}{\Delta x}
\]

\[
\Delta p_i^- = -\rho_i \frac{\phi_i - \phi_{i-1}}{\Delta x}
\]
Well-balanced scheme for HSE

Interested in **numerical** hydrostatic equilibrium:

\[p_{i+1/2}^L = p_{i+1/2}^R \]

\[p_i + \frac{\Delta x}{2} \Delta p_i^+ = p_{i+1} - \frac{\Delta x}{2} \Delta p_{i+1}^- \]

\[\frac{p_{i+1} - p_i}{\Delta x} = -\frac{\rho_i + \rho_{i+1}}{2} \frac{\phi_{i+1} - \phi_i}{\Delta x} \]

Discrete HydroStatic Equilibrium
Well-balanced scheme for HSE

Interested in **numerical** hydrostatic equilibrium:

$$p^L_{i+1/2} = p^R_{i+1/2}$$

Equilibrium?

Requirement on Riemann solver:

$$F^n_{i\pm 1/2} = \mathcal{F} \left(\begin{bmatrix} \rho^L_{i+1/2} \\ 0 \\ p_{i+1/2} \end{bmatrix}, \begin{bmatrix} \rho^R_{i+1/2} \\ 0 \\ p_{i+1/2} \end{bmatrix} \right) = \begin{bmatrix} 0 \\ p_{i+1/2} \\ 0 \end{bmatrix}$$

e.g. HLLC, Roe

Discrete HydroStatic Equilibrium
Example 5

Hydrostatic atmosphere in a constant gravitational field

\[\phi_i = g x_i \]
\[\frac{p_{i+1} - p_i}{\Delta x} = -\frac{\rho_i + \rho_{i+1}}{2} \frac{\phi_{i+1} - \phi_i}{\Delta x} \]
\[p_i = K_i \rho_i^\gamma \]

\[x \in [0, 2] \]

\[K = \begin{cases}
2 & \text{if } x < 1 \\
1 & \text{if } x \geq 1
\end{cases} \sim \text{entropy} \]

Error in pressure:

<table>
<thead>
<tr>
<th>N</th>
<th>1st</th>
<th>2ndTVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>6.3E-02 / 3.3E-16</td>
<td>6.2E-04 / 1.3E-16</td>
</tr>
<tr>
<td>64</td>
<td>3.2E-02 / 3.8E-15</td>
<td>1.6E-04 / 4.6E-16</td>
</tr>
<tr>
<td>128</td>
<td>1.6E-02 / 6.1E-15</td>
<td>4.2E-05 / 8.8E-16</td>
</tr>
<tr>
<td>256</td>
<td>8.0E-03 / 7.0E-15</td>
<td>1.1E-05 / 6.7E-16</td>
</tr>
<tr>
<td>512</td>
<td>4.0E-03 / 1.1E-13</td>
<td>2.7E-06 / 3.4E-15</td>
</tr>
</tbody>
</table>

\[Err = \frac{1}{N} \sum_i |p_i - p_i^0| \]
Conclusions

- 1D well-balanced scheme for (isentropic, isothermal, arbitrary) hydrostatic equilibrium (for general EoS)

- Extension to higher-order?

- Non-zero velocity steady state?
 (e.g. for steady accretion flow)

- Multi-D well-balanced scheme for (isentropic, isothermal) hydrostatic equilibrium (for general EoS)

Thank you for your attention!!!